• Title/Summary/Keyword: 화염 불안정성

Search Result 70, Processing Time 0.025 seconds

Numerical Simulations of Nonlinear Behaviors of Pulsating Instabilities in Counterflow Diffusion Flames (대향류 확산화염에서 맥동 불안정성의 비선형 거동에 대한 수치해석)

  • Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.9
    • /
    • pp.859-866
    • /
    • 2010
  • Nonlinear dynamics of pulsating instability-diffusional-thermal instability with Lewis numbers sufficiently higher than unity-in counterflow diffusion flames, is numerically investigated by imposing a Damkohler number perturbation. The flame evolution exhibits three types of nonlinear behaviors, namely, decaying pulsating behavior, diverging behavior (which leads to extinction), and stable limit-cycle behavior. The stable limit-cycle behavior is observed in counterflow diffusion flames, but not in diffusion flames with a stagnant mixing layer. The critical value of the perturbed Damkohler number, which indicates the region where the three different flame behaviors can be observed, is obtained. A stable simple limit cycle, in which two supercritical Hopf bifurcations exist, is found in a narrow range of Damkohler numbers. As the flame temperature is increased, the stable simple limit cycle disappears and an unstable limit cycle corresponding to subcritical Hopf bifurcation appears. The period-doubling bifurcation is found to occur in a certain range of Damkohler numbers and temperatures, which leads to extend the lower boundary of supercritical Hopf bifurcation.

Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames (합성가스와 공기를 혼합한 예혼합화염의 셀 불안정성에 있어서 탄화수소 계 연료첨가에 대한 효과)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kwon, Oh-Boong;Bae, Dae-Seok;Yun, Jin-Han;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Experiments were conducted in a constant-pressure combustion chamber to investigate the effects of hydrocarbon addition on cellular instabilities of syngas-air flames. The measured laminar burning velocities were compared with the predicted results computed using reliable kinetic mechanisms with detailed transport and chemistry. The cellular instabilities that included hydrodynamic and diffusional-thermal instabilities of the hydrocarbon-added syngas-air flames were identified and evaluated. Further, experimentally measured critical Peclet numbers for fuel-lean flames were compared with the predicted results. Experimental results showed that the laminar burning velocities decreased significantly with an increase in the amount of hydrocarbon added in the reactant mixtures. With addition of propane and butane, the propensity for cell formation was significantly diminished whereas the cellular instabilities for methane-added syngas-air flames were not suppressed.

Oscillatory Instabilities of Edge Flames in Solid Rocket Combustion (고체연료로켓에서 에지화염의 맥동 불안정성)

  • Kim Kang-Tae;Park Jun-Sung;Park Jeong;Kim Jeong-Soo;Keel Sang-In;Cho Han-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.275-278
    • /
    • 2006
  • Systematic experiments in $CH_4/Air$ counterflow diffusion flames diluted with He have been undertaken to study the oscillatory instability in which lateral heat loss could be remarkable at low global strain rate. The oscillatory instability arises for Lewis numbers greater than unity and occurs near extinction condition. The dynamic behaviors of extinction in this configuration can be classified into three modes; growing, harmonic and decaying oscillation mode near extinction. As the global strain rate decreases, the amplitude of the oscillation becomes larger. This is caused by the increase of lateral heat loss which ran be confirmed by the reduction of lateral flame size. Oscillatory edge flame instabilities at low global strain rate are shown to be closely associated with not only Lewis number but also heat loss (radiation and lateral heat loss).

  • PDF

A Structural Behavior of the Propane/Air Premixed Flame Interacting with an Ultrasonic Standing-wave (정상초음파가 개재하는 프로판/공기 예혼합화염의 구조 거동)

  • Lee, Sang-Shin;Seo, Hang-Seok;Kim, Jeong-Soo;Lee, Do-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.294-299
    • /
    • 2012
  • An investigation into the influence of ultrasonic standing wave on the structural behavior of propane/air premixed flame has been made to get a clue to the combustion reaction acceleration and combustion instability, as well. Visualization technique utilizing the Schlieren method was employed for the observation of structural variation of the premixed flame. The flame shape and propagation velocity were measured according to the variation of equivalence ratio. It was found that the standing wave distorted the flame front and expedited a transition to the flame with turbulent nature.

  • PDF

Flame Instability in Heptane Pool Fires Near Extinction (소화근처 헵탄 풀화재의 화염불안정성)

  • Jeong, Tae Hee;Lee, Eui Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1193-1199
    • /
    • 2012
  • A cup burner experiment was performed to investigate the effect of the oxidizer velocity and concentration on flame instability near extinction. Heptane was used as a fuel and air diluted by nitrogen and carbon dioxide was used in the oxidizer stream. Two types of flame instabilities at the flame base and at axial downstream were observed near extinction. The instability at the flame base could be characterized by cell, swing, and rotation modes, and the cell mode changed to the rotation mode through the swing mode as the oxidizer velocity increased. To assess the parameters for the flame instability, the initial mixture strengths, Lewis number, and adiabatic flame temperature were investigated under each condition. The Lewis number might be the most important among them, but it is impossible to generalize because of the insufficient number of cases. Furthermore, the axial periodic flickering motion disappeared at low and high oxidizer velocities near extinction. This resulted from the fact that low oxidizer velocity induced evaporated fuel velocity below the critical velocity and high velocity made the reacting fuel velocity comparable.

Investigation of Premixed Flame Instability with Heat and Momentum Losses (열 및 운동량 손실이 예혼합화염의 연소불안정성에 미치는 영향에 관한 연구)

  • Kang Sang Hun;Baek Seung Wook;Im Hong Geun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.101-119
    • /
    • 2005
  • For MEMS applications, the effects of the momentum and heat loss on the stability of laminar premixed flames in a narrow channel are investigated by high-fidelity numerical simulations. A general finding is that momentum loss promotes the Saffman-Taylor (S-T) instability which is additive to the Darrieus-Landau (D-L) instabilities, while the heat loss effects result in an enhancement of the diffusive-thermal (D-T) instability. These effects are also valid in nonlinear behavior of the premixed flame. The simulations of multiple cell interactions are also conducted with heat and momentum loss effects.

Instability Analysis of Counterflow Diffusion Flames with Radiation Heat Loss (복사 열손실을 받는 대향류 확산화염의 불안정성 해석)

  • Lee, Su-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.857-864
    • /
    • 2012
  • A linear stability analysis of a diffusion flame with radiation heat loss is performed to identify linearly unstable conditions for the Damk$\ddot{o}$hler number and radiation intensity. We adopt a counterflow diffusion flame with unity Lewis number as a model. Near the kinetic limit extinction regime, the growth rates of disturbances always have real eigenvalues, and a neutral stability condition perfectly falls into the quasi-steady extinction. However, near the radiative limit extinction regime, the eigenvalues are complex, which implies pulsating instability. A stable limit cycle occurs when the temperatures of the pulsating flame exceed the maximum temperature of the steady-state flame with real positive eigenvalues. If the instantaneous temperature of the pulsating flame is below the maximum temperature, the flame cannot recover and goes to extinction. The neutral stability curve of the radiation-induced instability is plotted over a broad range of radiation intensities.

Experimental Study of Transition to Secondary Acoustic Instability at Downward-Propagating Premixed Flame in a Tube (튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구)

  • Park, Juwon;Kim, Daehae;Park, Dae Geun;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.915-921
    • /
    • 2020
  • Thermoacoustic instability caused by air conditioning in a combustion chamber has emerged as a problem that must be solved to establish a stable combustion system. Thermoacoustic instability is largely divided into primary and secondary acoustic instability. In this study, an experimental study of the effects of heat losses was conducted to investigate the mechanism of secondary acoustic instability. To generate the secondary acoustic instability, a quarter-wavelength resonator with one open end and one closed end was used, and the inside of the resonator was filled with premixed gases. Subsequently, secondary acoustic instability with downward-propagating flames could be realized via thermal expansion on the burnt side. To control heat losses qualitatively, an additional co-axial tube was installed in the resonator with air or nitrogen supply. Therefore, additional diffusion flames can be formed at the top of the resonator depending on the injection of the oxidizer into the co-axial tube when rich premixed flames are used. Consequently, secondary acoustic instability could not be achieved by increasing heat losses to the ambient when the additional diffusion flame was not formed, and the opposite result was obtained with the additional diffusion flame.

Experimental Study on Cellular Instabilities in Diluted Syngas-Air Premixed Flames (희석제가 첨가된 합성가스-공기 예혼합화염에 있어서 셀 불안정성에 관한 실험적 연구)

  • Vu, Tran Manh;Song, Won-Sik;Park, Jeong;Kim, Jeong-Soo;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.72-83
    • /
    • 2010
  • Experiments were conducted to investigate the effects of added diluents (carbon dioxide, nitrogen, and helium) on cellular instabilities in outwardly propagating spherical syngas-air premixed flames. Laminar burning velocities and Markstein lengths were measured by analyzing high-speed schlieren images at various diluent concentrations and equivalence ratios. Experimental results showed substantial reduction of the laminar burning velocities and of the Markstein lengths with the diluent additions in the fuel blends. Effective Lewis numbers of helium-diluted syngas-air flames increased but those of carbon dioxide- and nitrogen-diluted syngas-air flames decreased in increase of diluents in the reactant mixtures. With helium diluent, the propensity for cells formation was significantly diminished, whereas the cellular instabilities for carbon dioxide- and nitrogen-diluted syngas-air flames were not suppressed.

Transition Phenomenon from a Flat Flame to Turbulent Flame Motions by External Laser (외부 레이저에 의한 평면화염에서 난류화염거동까지의 천이현상)

  • Park, June Sung;Choi, Byung Chul;Fujita, Osamu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1209-1215
    • /
    • 2012
  • Experiments with premixed flames in a tube have been conducted to investigate the transition phenomenon from a laminar flat flame to turbulent motions. To induce this phenomenon, a flat flame is formed in a tube. Then, the local velocity at the center of the flat flame surface is increased using $CO_2$ laser irradiation. The deformed flame front propagates with an increase in the total flame surface and oscillating instability. Eventually, the flame front accelerates explosively, and it shows turbulent flame motions with a strong noise. The dynamic behaviors of the flame front prior to the turbulent motions are analyzed in this study to elucidate this process. The physical model of the process is presented according to observations.