• Title/Summary/Keyword: 화염전파과정

Search Result 32, Processing Time 0.024 seconds

Raumliche flammenausbreitung und "flame quenching" bei ottomotorischer verbrennung (오토엔진의 공간적 화염전파와 "Flame Quenching")

  • Pischinger, F.;Spicher, U.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.58-67
    • /
    • 1984
  • 공간적 화염전파에 대한 실험적인 파악을 통하여 오토엔진에서의 연소과정과 진행을 위한 깊은 통찰을 할 수 있다. 그것을 통하면 매우 희박한 공기, 연료 혼합기의 경우 실린더에서 직접소염 과정을 확인할 수도 있고 hydrocarbon의 불완전 연소와 나타나는 qunching zone간의 관계를 조사할 수도 있다. 광전도 섬유기술(Lichtleit-fasertechnik)을 사용하여 새로 개발된 측정방법을 이용하여 단기통 오토엔진에서 화염면의 공간적인 전파과정과 매우 희박한 공기 연료 혼합기 에서의 quench zone의 출현을 조사하였다. 측정결과들은 공기연료 혼합기가 희박해 질수록 화 염전파 과정이 점점 느려지는 것을 보여준다. 아주 높은 공기 과잉율을 갖는 엔진 운전에서는 화염속도와 연소속도가 매우 급하게 감소한다. 그리하여 화염면은 팽창 단계에서 상대적으로 증가하는 피스톤속도 때문에 더이상 피스톤을 따를 수가 없으며 그로 인해 직접 피스톤상부에 소염대가 형성된다. 그에 의해 배기가스에서의 hydrocarbon 방출의 급격한 증가와 효율이 급격히 감소하는 엔진 운전과 관련이 지어진다.

  • PDF

A Study on the Flame Configuration and Flame Stability Mechanism with a Nozzle Diameter of Laminar Lifted Jet Flame (층류제트 화염의 노즐직경에 따른 안정화 메커니즘과 화염형상에 관한 연구)

  • Kim, Tae-Kwon;Kim, Kyung-Ho;Ha, Ji-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.204-215
    • /
    • 2011
  • Flame stability is the one of the main mechanism of laminar lifted flame and flame propagation velocity becomes a yardstick to measure the flame stability. Bilge has presented the flame propagation velocity of the triple flame and the flame stability mechanism related the flame configuration and mixture fraction. However, there was not able to observe all process of flame ignition and extinction for small nozzle diameter. In this paper, we have subdivided the flame configuration and stability mechanism and classified the flame behavior with a nozzle diameter. Also we have subdivided the 'triple flame propagation opened' and the 'triple flame propagation closed' from the triple flame propagation of triple flame criterion.

Experimental Study on the Flame Spread Characteristics under Reduced Atmospheric Pressures and Elevated Oxygen Concentrations (저기압 고산소 환경에서 화염 전파특성에 관한 실험적 연구)

  • Yang, Ho-Dong;Kwon, Hang-June;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.78-83
    • /
    • 2016
  • The characteristics of flame spread under similar atmospheric conditions to those inside the first stage of launch vehicles were investigated to provide fundamental knowledge to prevent fires and explosions of vehicles during launching operations. To this end, the rate of flame spread on the solid fuel was measured at elevated oxygen concentrations and reduced atmospheric pressures. A 0.18 mm diameter optical fiber was used as a solid fuel. The experimental results indicated that elevated oxygen concentrations can increase the rate of flame spread while increasing the atmospheric pressures to 1 atm can lead to decreases in the rate of flame spread. The increases in the rate of flame spread with pressure is due mainly to reductions in the convective heat loss that are clarified through an analysis of the pressure dependence on the convective heat transfer coefficient.

Combustion Characteristics of Methane-Air Pre-mixture in a Closed Vessel(II) (밀폐용기내 메탄-공기 예혼합기의 연소특성(II))

  • 김봉석;이영재;고창조;권철홍
    • Journal of Energy Engineering
    • /
    • v.4 no.1
    • /
    • pp.85-94
    • /
    • 1995
  • 본 연구에서는 최근 차량용 대체연료로서 주목받고 있는 천연가스의 연소특성을 규명하기 위해 밀폐된 정적연소실을 이용, 당량비, 초기압력 및 점화위치 변화에 따른 연소실험을 행하였으며, 그 결과 다음과 같은 결론을 얻었다. 메탄-공기 예혼합기의 화염전파과정은 이론혼합기 부근에서 구면형으로 진행되는데 반해, 과농 또는 과박 혼합기 그리고 점화위치가 연소실 벽면에 가까울수록 타원형으로 진행되며, 초기압력이 증가함에 따라 화염전파는 느려진다. 화염전파속도와 연소 속도는 초기압력이 낮고 점화위치가 연소실 중심에 가까울수록 빠르며, 당량비 1.0∼1.1 사이에서 최대치를 보인다.

  • PDF

A Study on Combustion Characteristics of the Methane-Hydrogen Lean Mixture by Using Multiple Spark Capacity Discharge in a CVCC (II) (반복점화장치 사용시 정적연소실내 메탄-수소 희박혼합기의 연소특성 연구(II))

  • Kim Bong-Seock
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.311-318
    • /
    • 2004
  • In the present study, the combustion characteristics of methane and hydrogen-supplemented methane as alternative fuels for automotive vehicles were investigated at various hydrogen substitution rate, ignition position and ignition methods in a CVCC. The main results obtained from the study can be summarized as follow. In case of center ignition and neat methane-air mixture, the flame propagation processes are propagated with an elliptical shape, but they are changed an instable elliptical shape flame with very regular cells and higher velocity by increasing the hydrogen supplement rate. In case of side, 0.5R ignition and neat methane-air mixture, the flame propagation processes are propagated with an instable elliptical shape flame, but they are changed from an instable elliptical shape to wedge shape flame with very irregular cells and higher velocity by increasing the hydrogen supplement rate. Although the flame propagation shape with ignition position and ignition devices was not differ, the flame area of MSCDI device was a little larger than it of CDI device at the same time.

A Numerical Study of 1-D Surface Flame Spread Model - Based on a Flatland Conditions - (산불 지표화의 1차원 화염전파 모델의 수치해석 연구 - 평지조건 기반에서 -)

  • Kim, Dong-Hyun;Tanaka, Takeyoshi;Himoto, Keisuke;Lee, Myung-Bo;Kim, Kwang-Il
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.63-69
    • /
    • 2008
  • The characteristics of the spread of a forest fire are generally related to the attributes of combustibles, geographical features, and meteorological conditions, such as wind conditions. The most common methodology used to create a prediction model for the spread of forest fires, based on the numerical analysis of the development stages of a forest fire, is an analysis of heat energy transmission by the stage of heat transmission. When a forest fire breaks out, the analysis of the transmission velocity of heat energy is quantifiable by the spread velocity of flame movement through a physical and chemical analysis at every stage of the fire development from flame production and heat transmission to its termination. In this study, the formula used for the 1-D surface forest fire behavior prediction model, derived from a numerical analysis of the surface flame spread rate of solid combustibles, is introduced. The formula for the 1-D surface forest fire behavior prediction model is the estimated equation of the flame spread velocity, depending on the condition of wind velocity on the ground. Experimental and theoretical equations on flame duration, flame height, flame temperature, ignition temperature of surface fuels, etc., has been applied to the device of this formula. As a result of a comparison between the ROS(rate of spread) from this formula and ROSs from various equations of other models or experimental values, a trend suggesting an increasing curved line of the exponent function under 3m/s or less wind velocity condition was identified. As a result of a comparison between experimental values and numerically analyzed values for fallen pine tree leaves, the flame spread velocity reveals a prediction of an approximately 10% upward tendency under wind velocity conditions of 1 to 2m/s, and of an approximately 20% downward tendency under those of 3m/s.

Aerodynamic characteristics of KSR-Ⅲ and jet impingement on a deflector during launch (KSR-Ⅲ 공력특성 및 발사화염 충돌유동에 대한 연구)

  • Kim, In-Seon;Ra, Seung-Ho;Ok, Ho-Nam;Choe, Seong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.98-107
    • /
    • 2002
  • An experimental and numerical study of aerodynamic charateristics of KSR-III and jet impingement on a deflector during launch has been conducted. To investigate aerodynamic characteristics of KSR-III configuration, wind tunnel tests using 6.4% scale model were performed by 4x4 feet ADD trisonic wind tunnel on the Mach number range of 0.4~3.8. Solutions of Three dimensional Euler equations were also obtained and compared with test result. For the study of KSR-III jet impingement flowfield on a deflector during launch operation, unsteady computation using CFD-FASTRAN was performed.

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

LIF/PLIF Measurements of OH Concentration in Flames (LIF/PLIF를 이용한 화염에서의 OH농도 측정)

  • 이원남
    • Journal of the KSME
    • /
    • v.33 no.12
    • /
    • pp.1031-1042
    • /
    • 1993
  • 연소현상에 대한 이해를 증가시키기 위하여 화염을 이용한 많은 실험적 연구가 이루어져 왔다. 특히 연소 모델의 개선과 증명을 위하여는 화염에서의 성분 농도 측정이 필수적이며, 최근에 들어 측정 가능해진 래디컬성분의 측정은 연소해석분야에 많은 진전을 가져왔다. OH, H 및 O는 연료의 분해 (decomposition) 및 연소 산화물생성 이외에도 CO와 NO 같은 공해물질의 형성등 연소과정에서 매우 중요한 래디컬들이며, 특히 화염영역에서의 OH의 전파(transport)는 화염의 점화 및 안정성 (stability)에도 큰 영향을 미친다. OH래디컬은 연소과정에서 가장 중요한 성분 중 하나이며, 또한 스펙트럼이 비교적 잘 알려져 있어 레이저 유도 형광의 적용이 용이하므로 화염에서의 OH농도 측정에 LIF(laser induced fluorescence) 또는 PLIF(planar laser induced fluorescence)가 널리 사용되고 있다. 따라서 LIF 및 PLIF의 원리 및 연소분야에서의 응용을 OH농도 측정을 중심으로 소개하고자 한다.

  • PDF

A Schlieren-photographic Visualization of the Methane/Air Premixed Flame Propagating inside a Rectangular Tube Locally-perturbed by an Ultrasonic Standing Wave (국소적 정상초음파장에 의해 교란되어 사각튜브형 연소실 내에서 전파하는 메탄/공기 예혼합화염의 슐리렌기법에 의한 가시화)

  • Kim, Min Sung;Kim, Jeong Soo;Hwang, Yeong Yeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.4
    • /
    • pp.43-49
    • /
    • 2014
  • This experimental study has been conducted to scrutinize the effects of an ultrasonic standing wave (USW) on the propagating velocity and structure of methane/air premixed flame. Propagating flame was caught by high-speed Schlieren photography, and the variation of flame-behavior was analyzed in detail. It is revealed that horizontal splitting in burnt zone is resulted by the USW, and the flame propagation velocity is augmented due to the strengthened chemical reaction. Evolutionary feature of the flame perturbed by USW, maintaining a pseudo-symmetry of top and bottom flame-front about the propagation axis tends to be free from buoyancy effect.