• Title/Summary/Keyword: 화염유도로

Search Result 105, Processing Time 0.033 seconds

Flame deflector design of test facility to propulsion system model (추진기관 시스템 시험설비의 화염유도로 설계)

  • Jeon, Sung-Bok;Lee, Jae-Ho;Lee, Kwang-Jin;Cho, Nam-Kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.597-602
    • /
    • 2012
  • Flame deflector is an important plan item for protecting propulsion system model, test facility, and life. This study suggests the way of flame deflector design in test facility evaluating performance of 75 ton and 300ton PSM. The flame deflector height was designed as 30m using a slope way in establishment location of facility. The flame deflector suitability was considered according to the shape of open and closed type. Also the cooling duct was made as modeling in accordance with core and side injection type.

  • PDF

Conceptual Design of KSLV-II Launch Complex Flame Deflector (한국형발사체 발사대시스템 화염유도로 개념 설계 (I))

  • Oh, Hwayoung;Kang, Sunil;Kim, Daerae;Lee, Jungil;Um, Hyungsik;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.75-81
    • /
    • 2014
  • The flame deflector should be constructed to minimize the induced environmental effects on the launch vehicle and to minimize the exhaust impingement effects on the launch complex structures during the lift-off operation. Therefore, it should be designed to avoid recirculation and reverse flow of rocket exhaust plumes. The circumstance around launch complex and characteristics of launch vehicle should be taken into consideration for the flame deflector design. In this paper, we designed the flame deflector reflecting KSLV-II 1st engine characteristics and analyzed the effect of exhaust plumes related to change geometry by means of computational flow analysis.

CFD Investigation of Rocket Nozzle Plume for Flame Deflector Preliminary Analysis (화염유도로 예비 해석을 위한 로켓노즐 플룸의 CFD 해석 검증)

  • Jun, Doo-Sung;Kim, Jae-Woo;Kim, Jong-Rok;Kim, Woo-Kyeom;Kim, Seung-Cheol;Moon, Hee-Jang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.313-316
    • /
    • 2011
  • This paper investigates CFD investigation on single phase supersonic nozzle flow and 2-phase subson ic flow prior to rocket nozzle supersonic 2-phase flow with water injection within the flame deflector. Numerical results of supersonic nozzle single phase flow showed no notable unrealistic behavior as it captures the usual shock cell structures. Three-dimensional 2-phase flow analysis has also been performed to verify whether the approach can grab the droplet behavior during cooling by water injection. It is expected these basic studies will enhance the cooling problem analysis of supersonic 2-phase rocket plume in the future.

  • PDF

KSLV-I Plume Analysis Part III for the launch pad flame deflector performance (발사대 화염유도로 해석을 위한 KSLV-I 플룸 해석 3)

  • Hwang, Do-Keun;Nam, Jung-Won;Kim, Seong-Lyong;Kang, Sun-Il;Kim, Dae-Rae;Ra, Seung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.375-378
    • /
    • 2010
  • Hot and high speed plume exhausted during KSLV-I flight test is cooled down by an amount of water ejected from 'gas deflector cooling system' of launch complex to reduce the effects on the launch vehicle and launch complex. In this study, simplified axisymmetric computational calculation with 2-phase is carried out to analysis the water injection effects on flow field.

  • PDF

The Cooling Characteristics of a Gas Deflector Using Water Spray Cooling System in Launch Pad (물 분사 냉각시스템을 이용한 발사대 화염유도로의 냉각특성)

  • Lee, Kwang-Jin;Chung, Yong-Gahp;Cho, Nam-Kyung;Nam, Jung-Won;Jung, Il-Hyung;Ra, Seung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.756-762
    • /
    • 2011
  • A gas deflector cooling system plays an important role in the suppression of shock wave generated during the ignition of a launch vehicle engine. Also, this system decrease a large vibration of damaging the payload and structure of the launch vehicle. The gas deflector cooling system in the launch pad of NARO space center was constructed to directly inject water into the plume of the launch vehicle engine. The flight test result of NARO space launch vehicle showed that this method had a good performance on the viewpoint of cooling the gas deflector.

  • PDF

A Computational Study on Cooling Analysis of the Flame Deflector for the 75 tonf Class Propulsion Test Facility (75톤급 추진기관 시험설비 화염유도로 냉각해석에 관한 수치적 연구)

  • Moon, Seong-Mok;Cho, Nam-Kyung;Kim, Seong-Lyong;Jun, Sung-Bok;Lee, Kyoung-Hoon;Kim, Dong-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.55-64
    • /
    • 2015
  • In this study, a 3-D flame cooling analysis is conducted to examine thermal safety for the flame deflector of the 75 tonf class propulsion test facility, and the safe discharge of the exhaust gas is assessed by using numerical results. The Mixture multiphase model is adopted for the simulation of heat transfer and phase exchange process between flame and cooling water, and the computational study using the single species unreacted model for the exhaust plume is carried out for the flame cooling. Numerical analysis predicts maximum temperature on the flame deflector wall for different water flow rates, and evaluates the safe minimum flow rate of water corresponding to the fire-resistant temperature for concrete.

Three Dimensional Supersonic Jet Flow Analysis Impinging on Flame Deflector Surface (화염유도로 주위의 3차원 초음속 제트 유동 해석)

  • Park, S.K.;Choi, B.K.;Yoon, K.T.;Woo, Y.C.;Lee, D.S.;Kang, S.I.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.494-498
    • /
    • 2001
  • When supersonic jet impinges on wall from the nozzle, complex flow pattern appears such as Mach disc, expansion fan, and jet boundary. The numerical computation of this supersonic jet is important on flame deflecctor design for launch space especially. In this paper, we analyzed supersonic jet structure impinging on deflector wall using three dimensional steady and unsteady compressible equation and showed temperature and pressure distribution on the wall surface. As a result, some dominant factors of jet flows are discussed for conceptual design of flame deflector.

  • PDF

Basic Design of Propellant Ground Support Equipment and Flame Deflector for KSLV-II Launch Complex (한국형발사체 발사대시스템 추진제공급설비 및 화염유도로 설계)

  • Kang, Sunil;Oh, Hwayoung;Kim, Daerae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.76-86
    • /
    • 2015
  • KSLV-II, a new launch vehicle of Korea, requires a new launch complex(LC) for its own and proper launch operations. The new launch complex will be constructed in NARO Space Center neighboring KSLV-I launch complex for maximizing operation efficiency and economic matters. The launch complex consists of three ground support equipments, i.e., mechanical, electrical, and fuel in general. The fuel ground support equipment could be defined as a combination of systems for storage and supply of propellants and gases which are required by a launch vehicle. The compositions, functions and capabilities of fuel ground support equipment are introduced in this paper. In addition, basic design results of flame deflector configurations are included.

레이저를 이용한 연소진단 기술

  • 한재원;박승남;박철웅;이은성;이병준
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.169-175
    • /
    • 1995
  • 레이저 계측기술의 일반적인 장점인 비접촉방식에 의한 측정 가능, 측정의 정밀 정확도 향상, 높은 검지도 등의 장점으로 연소현상을 진단하기 위하여 여러 가지 레이저 게측지술이 사용되고 있다. 레이저를 이용한 연소진단 기술 중 가장 널리 사용되고 있는 CARS, 레이저 형광유도 기술, 축퇴사광파 혼합기술에 대한 연구를 수행하였다. CARS 기술은 관련 측정기술과 실제 화염의 구조를 분석하는 응용연구를 하였으며, 산업적인 응용을 위한 장비를개발하였다. 그리고, 레이저 형광 유도 기술을 적용하여 화염 내부에서의 OH 농도를 측정하였다. 최근 활발히 연구되고 있는 축퇴사광파 혼합기술을 이용한 연소기체 진단법을 연구하기 위하여, 분광기를 구성하고 화염 내에서 OH 농도를 측정하여 레이저 유도형광법으로 측정한 결과와 비교 하여 서로 일치하는 결과를 얻었다.

  • PDF