• Title/Summary/Keyword: 화염시험

Search Result 200, Processing Time 0.027 seconds

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 1 : Flame Stability (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 1 : 화염안정성)

  • Lee, Min Chul;Joo, Seong Pil;Yoon, Jisu;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.632-638
    • /
    • 2013
  • This paper describes on the flame stability and combustion instability of coal derived synthetic gas especially for gases of Buggenum IGCC in Netherlands and Taean IGCC in Korea. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Flame stability map is plotted according to the flame structure by dividing all regimes into six, and only regime I and II are identified to be stable. Both syngases of Taean and Buggenum with nitrogen integration corresponds to regime II in which syngas burnt stably and flame coupled with outer recirculation flow. Stable regime of Buggenum is larger than that of Taean when considering only $H_2$/CO ratio due to higher content of hydrogen. However, when considering nitrogen dilution, syngas of Taean is burnt more stably than that of Buggenum since more nitrogen in Buggenum has negative effect on the stability of flame.

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 2 : NOx/CO emission Characteristics, Temperature Characteristics and Flame Structures (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 2 : NOx/CO 배출특성, 온도특성, 화염구조)

  • Lee, Min Chul;Yoon, Jisu;Joo, Seong Pil;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.639-648
    • /
    • 2013
  • This paper describes on the NOx/CO emission characteristics, temperature characteristics and flame structures when firing coal derived synthetic gas especially for gases of Buggenum and Taean IGCC. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Nitrogen addition caused decrement in adiabatic flame temperature, thus resulting in the NOx reduction. At low heat input condition, nitrogen dilution raised the CO emission dramatically due to incomplete combustion. These NOx reduction and CO arising phenomena were observed at certain flame temperature of $1500^{\circ}C$ and $1250^{\circ}C$, respectively. As increasing nitrogen dilution, adiabatic flame temperature and combustor liner temperature were decreased and singular points were detected due to change in flame structure such as flame lifting. From the results, the effect of nitrogen dilution on the NOx/CO and flame structure was examined, and the test data will be utilized as a reference to achieve optimal operating condition of the Taean IGCC demonstration plant.

A Study on the Fire Safety of Expanded Poly-Stylene Foam Panel (스치로폼 패널의 화재 안전성 연구)

  • Kweon, Oh-Sang;Yoo, Yong-Ho;Kim, Heung-Youl;Kim, Jung-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.513-519
    • /
    • 2009
  • 현재 국내의 주요 샌드위치패널 화재안전성능 평가방법에는 Cone calorimeter (연소성능) 및 가스유해성 시험방법이 있지만 샌드위치패널의 경우 불연재질 속 심재의 연소특성을 측정하여 실제 화재에서의 연소거동을 예측하기가 쉽지 않다. 따라서, 본 연구에서는 스티로폼 패널의 화재 안전성 연구를 위해서 ISO 9705 시험(Room Corner Test)을 실시하였다. 실험결과 두 시편 모두 시험이 진행되고 약 12분 정도, 버너의 열량이 100 kW에서 300 kW로 진행되는 시점에서 천정부가 붕괴되어 스티로폼 샌드위치 패널의 구조적인 문제점이 발생되었다. 스티로폼 샌드위치 패널은 내부 심재에 화염이 전파되었을 경우 급속한 화염의 전파 속도로 인해 구조적인 문제점을 발생되는 것을 확인할 수 있었으며, 향후 이와 같은 스티로폼 샌드위치 패널의 실물 화재 시험에 따른 연구 결과들이 화재안전 성능 등급 분류 기준 설정에 사용될 수 있을 것이다.

  • PDF

Advanced flame quality indicator for emission control (저공해 연소를 위한 화염진단장치의 특성)

  • Kim, Jong-Won;Lee, Sang-Ho;Park, Kee-Bae;Sim, Kyu-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.43-50
    • /
    • 1996
  • It is very important to improve the combustion efficiency and reduce pollutant emission in order to save energy and environment. Especially, thermal NOx has been reduced through monitoring burner flame, because the thermal NOx is strongly related to flame characteristics. In this work, a flame-monitoring system was fabricated with photodiode, optical fiber, interference filter and data acquisition system, and it was applied to a lab-scale methane combustion system and a testing facility. Flame intensity and mean frequency increased with increasing turbulent intensity and fuel loading. The sensor signal from flame fluctuations differed from that without flame, which showed the availability af the flame scanner to find the presence of flame. NOx emissions increased with flame intensity.

  • PDF

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

Video Flame Detection with Periodicity Analysis Based False Alarm Rejection (주기 신호 검출을 통한 거짓 경보 제거 기능을 갖춘 비디오 화염 감지 기법)

  • Lee, Sang-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.4
    • /
    • pp.479-485
    • /
    • 2011
  • A video flame detection method analyze the temporal and spatial characteristics of the regions which have the flame-like color and moving objects in the input video. The video flame detector should be able to reduce a false alarm rate without the degradation of flame detection capability. The conventional methods can reject the false alarm caused by the car lights and some electric lights. However they make the false alarm caused by the warning lights, neon sign, and some periodic flickering lights which have the flame-like color and temporal features. This paper propose the video flame detection method with periodicity analysis based false alarm rejection. The proposed method can detect the periodicity of the flickering electric lights and can reject the false alarm caused by the periodic electric lights. The computer simulation showed that the proposed method did not make the false alarm in the test video with the periodic electric lights. But the conventional methods made a false alarm in the same test video.

The Cooling Characteristics of a Gas Deflector Using Water Spray Cooling System in Launch Pad (물 분사 냉각시스템을 이용한 발사대 화염유도로의 냉각특성)

  • Lee, Kwang-Jin;Chung, Yong-Gahp;Cho, Nam-Kyung;Nam, Jung-Won;Jung, Il-Hyung;Ra, Seung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.756-762
    • /
    • 2011
  • A gas deflector cooling system plays an important role in the suppression of shock wave generated during the ignition of a launch vehicle engine. Also, this system decrease a large vibration of damaging the payload and structure of the launch vehicle. The gas deflector cooling system in the launch pad of NARO space center was constructed to directly inject water into the plume of the launch vehicle engine. The flight test result of NARO space launch vehicle showed that this method had a good performance on the viewpoint of cooling the gas deflector.

  • PDF

Analysis of effect of hydrogen jet fire on tunnel structure (수소 제트화염이 터널 구조체에 미치는 영향 분석)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.535-547
    • /
    • 2021
  • A policy to expand the hydrogen economy has been established in Korea and the supply of FCEV is being expanded to realize a hydrogen society. Therefore, the supply of FCEV is expected to increase rapidly, and a solution to respond to accidents of FCEV is required. In this study, an experimental study was conducted to analyze the effect of the hydrogen jet flame generated by a FCEV on the inner wall of the tunnel and the characteristics of the internal radiant heat. For the experiment, the initial pressure of hydrogen tank was set to 700 bar, and the injection nozzle diameter was set to 1.8 mm in order to make the same as the conditions generated in the FCEV. In addition, a tunnel fire resistance test specimen having the same strength as the compressive strength of concrete applied to general tunnels of 40 MPa was manufactured and used in the experiment. The results were analyzed for the separation distance (2 m and 4 m) between the hydrogen release nozzle and the tunnel fire resistance test concrete. As the result, the maximum internal temperature of the test concrete was measured to 1,349.9℃ (2 m separation distance), and the radiant heat around the jet flame was up to 39.16 kW/m2.