• Title/Summary/Keyword: 화염속도

Search Result 382, Processing Time 0.028 seconds

Combustion Characteristics of Methane-Air Pre-mixture in a Closed Vessel(II) (밀폐용기내 메탄-공기 예혼합기의 연소특성(II))

  • 김봉석;이영재;고창조;권철홍
    • Journal of Energy Engineering
    • /
    • v.4 no.1
    • /
    • pp.85-94
    • /
    • 1995
  • 본 연구에서는 최근 차량용 대체연료로서 주목받고 있는 천연가스의 연소특성을 규명하기 위해 밀폐된 정적연소실을 이용, 당량비, 초기압력 및 점화위치 변화에 따른 연소실험을 행하였으며, 그 결과 다음과 같은 결론을 얻었다. 메탄-공기 예혼합기의 화염전파과정은 이론혼합기 부근에서 구면형으로 진행되는데 반해, 과농 또는 과박 혼합기 그리고 점화위치가 연소실 벽면에 가까울수록 타원형으로 진행되며, 초기압력이 증가함에 따라 화염전파는 느려진다. 화염전파속도와 연소 속도는 초기압력이 낮고 점화위치가 연소실 중심에 가까울수록 빠르며, 당량비 1.0∼1.1 사이에서 최대치를 보인다.

  • PDF

The coflow effects on the flame stability of Heptane pool fire (헵탄 풀화재에서 화염안정성에 관한 주위류 효과)

  • Jeong, Tae-Hee;Lee, Eui-Ju
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.258-261
    • /
    • 2012
  • 풀화재에서 화염화염진동은 주위공기와의 밀도차에 의한 부력효과에 기인하여 주로 발생한다. 본 연구는 풀화재의 화염불안정성에 대해 산화제 유속 및 농도 변화에 따른 효과를 검토하기 위하여 컵버너 실험을 수행하였다. 실험결과는 산화제의 농도를 변화시켰을 경우에는 산화제의 불활성기체의 농도가 증가할수록 청염의 길이가 길어지고 컵버너 끝단으로부터 부상되는 것이 관찰된다. 한편, 산화제의 유속이 증가함에 따른 진동주파수가 감소함을 보인다. 이는 무차원 변수로 표현되는 주파수와 부력의 관계로 도시하였을 때 다양한 속도스케일을 사용할 수 있었지만, 연료와 산화제의 유속차로 정의되는 특성속도인 경우에 정지되어 있는 공기중에서의 풀화재 진동과 일치하는 관계식을 얻을 수 있었다. 그리고 진동주파수는 산화제 희석율과는 특정한 관계를 보이지 않는데 이는 국부적 화염구조와 연관성을 가지기 때문으로 판단된다.

  • PDF

Con-heater를 이용한 인화성액체의 연소특성에 관한 연구

  • Park, Hyung-Ju;Kim, Hong;Jung, Ki-Chang;Lee, Jung-Yoon
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.196-201
    • /
    • 2003
  • 대부분의 고체와 액체의 연소는 고체의 열분해에 의해 생성되는 가연성 기체나 액체의 증발에 의한 가연성증기가 공기중에 확산되는 형태의 확산연소이다. 이런 확산 연소에서 연소속도를 지배하는 요소는 연료와 산화제의 확산속도이며 고체와 액체 연료의 경우 기체상태의 열분해 생성물이나 증기의 생성속도가 연소속도에 영향을 미치는 요소가 된다. 이러한 형태의 연소에서 연료와 산화제의 공급상태에 따라 발열량 및 화염의 형태 등이 영향을 받게 된다. 화재에서 화재의 확대에 영향을 미치는 요소들 중에 화염의 높이와 복사열 에너지 등이 있다.(중략)

  • PDF

Frequency-Equivalence Ratio Correlation Analysis of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave (I) (정상초음파의 영향을 받는 메탄-공기 예혼합화염의 주파수-당량비 상관도 분석(I))

  • Kim, Min Sung;Kim, Jeong Soo;Koo, Jaye;Kwon, Oh Chae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.37-44
    • /
    • 2015
  • An experimental study was performed for the analysis of frequency-equivalence ratio correlation in the methane-air premixed flame influenced by ultrasonic standing wave. Evolutionary features of the propagating flame were caught by high-speed camera, and the variation of flame-behavior including local velocities was investigated in detail using a post-processing analysis of the high-speed images. It was found that propagation-velocity augmentation of the methane-air premixed flame by the intervention of ultrasonic standing wave was made in leaner mixture, but the velocity diminished when the strength of chemical reaction was saturated around the slightly fuel-rich side of stoichiometry.

Computation of a Low Strain Rate Counterflow Flame in Normal and Zero Gravity (정상중력 및 무중력에서의 저변형율 대향류화염의 전산)

  • Woe-Chul Park
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.107-111
    • /
    • 2002
  • A near extinction nonpremixed counterflow flame of 19% methane diluted by 81% nitrogen by volume and undiluted air at a low global strain rate, 20 s-1, was computed. Investigations were focused on effects of the duct thickness and velocity boundary conditions on the flame structure in normal and zero gravity conditions. The results showed that, under normal gravity conditions, the effects of the duct thickness and velocity boundary conditions were significant by shifting the flame position, but negligible in zero gravity. The differences in flame structure were caused by buoyancy, and hence should be considered in the measurements in normal gravity.

Experimental Study on the Effect of Velocity gradient on Propagation speed of Ttribrachial flame in Laminar Coflow Jets (삼지화염의 전파속도에 대한 속도구배의 영향에 관한 실험적 연구)

  • Kim, M.K.;Won, S.H.;Chung, S.H.;Fujita, O.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.221-228
    • /
    • 2005
  • The tribrachial flame in laminar coflow jet has been investigated experimentally with unsteady propagating condition. In this experiment, we found that the tribrachial point has an angle of flame surface because the location of tribrachial point is not on the base point of flame but on the inclined surface of flame. This angle of Flame surface at tribrachial point are increasing when the flame is approaching to the nozzle exit. With considering this angle of flame surface, the radial velocity gradient can affect flame propagation speed by increasing flow-stretch effect. The propagation speed of tribrachial flame was calculated with including above stretch effect. The speed decreases with increasing velocity gradient due to the increment of stretch effect.

  • PDF

Local Behaviour of Propagating Flames in an Explosion Chamber (폭발챔버에서 전파하는 화염의 국부 거동)

  • Park, Dal-Jae;Lee, Young-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.32-35
    • /
    • 2011
  • Experimental studies were carried out in an explosion chamber to investigate the influences of multiple cylinder obstacles on local flame propagation. The chamber dimension is 235 mm in height with a $1,000{\times}950\;mm^2$ rectangular cross section and a large vent area of $1,000{\times}320\;mm^2$. Multiple cylinder bars with obstruction ratio of 30% were used. In order to examine the interaction between the propagating flames and the obstacles, temporally resolved flame front images were recorded by a high speed video camera. The propagation behaviour of local flame fronts around the left obstacle was analyzed in terms of two different methods such as the incremental burnt area divided by the flame front length and the average of the local propagation velocity determined at each point along the flame front. It was found that two methods give good consistency.

Investigation of Effects of Shield Gas on Counterflow Flame Structure (차폐가스가 대향류 화염구조에 미치는 영향의 조사)

  • Park, Woe-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.112-117
    • /
    • 2002
  • The effects of shield gas on the structure of methane-air nonpremixed counterflow flames were numerically investigated. The near extinction flame of a low global strain rate 20 $s^{-1}$ of 19% methane diluted by 81% nitrogen by volume and undiluted air was computed. The flame shape, centerline temperature and axial velocity profiles were compared for different velocity of the shield gas and with and without the shield gas. The effects of the velocity of the shield gas were negligible for $V_{S}/V_{F}{\leq}2$ in normal gravity. Under normal gravity conditions, the flame shape and its position with the shield gas were different from those of the flame without the shield gas, whereas no discernible effects of the shield gas along the centerline were observed in zero gravity.

Characteristics and Risk Assessment of Flame Spreading Over Metal Dust Layers (퇴적금속 분진층을 전파하는 화염의 연소특성과 위험성 평가)

  • Han, Ou-Sup
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.47-52
    • /
    • 2005
  • The wide use of metal dusts have been found in industrial field and many dust explosion accidents occur by fire spread of dust layer. In this study, we developed a new experimental device to examine fire and explosion characteristics of the dust layer. Aspects of the burning zone over metals(Mg, Zr, Ta, Ti, etc) and PMMA(Polymethyl methacrylate) dust layers have been investigated experimentally to clarify behaviors (Spread rate and quenching distance) and effects of $N_2$ surrounding gas on the fire spread over metal dust layers. From the experimental result, it was found that the spread rate of metal dusts is larger than PMMA, the dependability of spread rate over the thickness of dust layer is small, and the minimum oxygen concentration of spread flame over Mg dust layer is 3.6-3.7 vol%. Since high correlation between the spread rate and the reciprocal of quenching distance was seen, relative risk prediction in those inflammable parameters can be predicted.

A Combustion Analysis of Surface Fuel Burning Experiment According to Density Variation (밀도에 따른 지표 연료의 연소실험 분석)

  • Kim, Eung-Sik;Kim, Jang-Hwan;Kim, Dong-Hyun;Park, Hyung-Ju;Kim, Jeong-Hun
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • This paper shows combustion characteristics of fallen leaves of Quercus variabilis and Pinus densiflora according to variation of mass densities. Combustion temperature, mass loss rate, flame height, duration of combustion and velocity of hot gas are measured and analyzed. For the experiment 10cm heighted baskets with varying diameters of 20, 30, 40 and 50cm are used for the combustion and the pilot ignition is carried on the top of the fuel. In case of Pinus densiflora mass loss rate, duration of flame, flame height and combustion time become larger as the mass density and diameter of basket increase, on the other hand Quercus variabilis shows saturation characteristics in mass loss rate and flame height. Velocity of hot gas is proportional to flame height.