• Title/Summary/Keyword: 화염내부유입

Search Result 9, Processing Time 0.027 seconds

미세물분무의 영향에 따른 PPV의 화염억제 특성

  • 김성원;이경덕;신창섭
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.05a
    • /
    • pp.408-411
    • /
    • 2003
  • PPV(Positive Pressure Ventilation)란 화재진압시 송풍기를 이용하여 화염이 발생한 구조물 내부로 신선한 공기를 유입시켜 내부압력을 상승시키는 방식으로서, 구조물 내부의 전체 영역에 균일하게 열ㆍ연기 및 연소 생성물 등의 급속 배기 및 구조물 내부온도를 급속히 감소시킬 수 있는 것이 특징이다.(중략)

  • PDF

진공 플라즈마 용사코팅시 분말 이송가스 유량이 적층효율에 미치는 영향

  • Jeong, Yeong-Hun;Nam, Uk-Hui;Byeon, Eung-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.161-161
    • /
    • 2014
  • 열플라즈마는 주로 아크 방전에 의해 발생시킨 전자, 이온, 중성입자(원자 및 분자)로 구성된 부분 이온화된 기체로, 국소열평형상태를 유지하여 구성입자가 모두 수천에서 수만도에 이르는 같은 온도를 갖는 고속의 제트 화염 형태를 이루고 있다. 이렇게 고온, 고열용량, 고속, 다량의 활성입자를 갖는 열플라즈마의 특성을 이용하여, 종래 기술에서는 얻을 수 없는 다양하고 효율적인 산업적 이용이 활발히 진행되고 있다. 용사코팅은 노즐 출구를 통해서 외부로 방출되는 열 플라즈마 화염을 이용하는 것으로 이 화염의 와류 특성으로 인하여 외기의 가스가 화염내부로 침투하는 특성을 가진다. 이러한 현상은 열원의 냉각효과 외에도 외기를 구성하는 기체 분자의 내부 유입을 의미하는 것으로 대기 상태에서 공정이 이루어진다면 열원 내로 유입되는 대기 내의 산소가 모재 표면과 반응하여 산화가 진행된다. 이러한 산화과정은 용사 코팅의 품질을 저하시키는 요인이 되므로, W, Ti 등과 같은 반응성이 높은 재료의 코팅은 산화과정을 방지하기 위하여 진공에서 코팅을 하여야만 한다. 진공 플라즈마용사코팅은 진공 또는 저압의 불활성 분위기 중에서 열플라즈마 화염에 용사재료를 투입하여 플라즈마 화염 내부에서 순간적으로 이를 용융시킨 후 고속으로 분출, 모재에 적층시키는 코팅공정이다. 이때 분말상의 용사재료를 고속으로 화염 중심에 투입하여 최대 에너지 전달이 이루어지도록 하는 것이 적층효율 및 코팅품질을 향상에 필수적이다. 하지만 플라즈마 화염 내부를 고속으로 이동하는 입자의 온도와 속도 및 궤적을 측정하여 제어하는 것은 매우 어렵기 때문에, 통상 형성된 코팅의 구조와 두께로부터 경험적으로 파라미터를 결정하는 것이 일반적이다. 본 연구에서는 초고속 레이저 카메라와 이미지 분석용 소프트웨어를 이용하여 플라즈마 화염내의 비행입자 궤적을 추적하고, 이를 통해 분말 이송가스의 유량이 코팅 효율 및 미세구조에 미치는 영향을 조사하였다. 플라즈마 화염은 중심부가 가장 높은 온도와 속도를 가지고 있기 때문에, 분말 이송가스의 유량이 적을 경우 투입된 분말은 단지 플라즈마 화염의 상부 경계면을 지나는 궤적을 갖게된다. 이로 인해 분말의 용융이 충분히 이루어지지 않아 적층 효율이 낮고 미용융 입자 및 기공이 많은 미세구조를 보였다. 이송가스 유량을 증가시키게 되면, 분말의 궤적은 플라즈마 화염의 중심부를 지나게 되어 적층 효율이 증가하고 미세구조 또한 개선되었다. 하지만 이송가스 유량이 지나치게 클 경우, 투입된 분말 입자는 플라즈마 화염을 조기에 관통하게 되어 비행궤적은 온도와 속도가 낮은 영역에 형성되었다.

  • PDF

Numerical Modeling for Turbulent Combustion Processes of Vortex Hybrid Rocket (Vortex Hybrid 로켓 난류연소과정의 모델링 해석)

  • 조웅호;김후중;김용모;윤명원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.244-245
    • /
    • 2003
  • 고체나 액체 추진로켓에 비하여 하이브리드 추진 시스템은 작동조건의 안정성과 안전함등의 많은 장점을 가지고 있다. HTPB와 같은 고체연료는 제작 및 저장, 운송 그리고 장착상의 안정성을 가지고 있으며 하이브리드 로켓의 고체연료로의 산화제의 유입을 제어하면서 추력의 변화와 엔진내부의 연소중단과 재 점화를 용이하게 할 수 있다. 이러한 이유로 인하여 하이브리드 엔진은 좀 더 경제적인 장치로 기대를 모으고 있다. 그러나, 기존의 하이브리드 로켓 엔진은 고체 추진 로켓에 비하여 낮은 연료 regression 율과 연소효율을 가지는 단점이 있다. 이러한 단점을 해결하고 요구되어지는 추력값과 연료유량을 증가시키기 위하여 고체연료의 표면적을 증가시킬 필요가 있다. 기존의 하이브리드 엔진에서는 연료 그레인에 다수의 연소포트를 만들어 표면적을 증가시켰으나 이는 비 활용 공간의 증가와 추진제의 질량 및 체적분율의 상당한 감소를 초래한다. 지난 수십년간에 걸쳐 하이브리드 엔진에서 연료의 regression 특성 및 엔진 성능 향상을 위한 연구가 계속되어 왔으며 최근에 엔진의 체적 규제를 경감시키고 연료의 regression율을 향상시키기 위하여 선회유동을 이용하는 하이브리드 로켓 엔진들이 제안되고 있다. 이러한 선회유동을 가지는 하이브리드 로켓은 고체연료 그레인에 대하여 평행하게 유입되는 기존의 하이브리드 로켓에 비하여 고체연료 벽면에서의 대류열전달이 현저하게 증가하게 되어 아주 높은 고체연료의 regression율을 얻을 수 있는 이점이 있다. 선회유동 하이브리드 로켓의 연소과정은 고체 연료의 열분해과정, 대류 열전달, 난류 혼합, 난류와 화학반응의 상호작용, soot의 생성 및 산화과정, soot 입자 및 연소가스에 의한 복사 열전달, 연소장과 음향장의 상호작용 등의 복잡한 물리적 과정을 포함하고 있다. 이러한 물리적 과정 중 난류연소, 고체연료 벽면 근방에서의 대류 열전달 및 연소과정에서 생성되는 soot 입자로부터의 복사 열전달, 그리고 고체연료 열 분해시 표면반응들은 고체연료의 regression율에 큰 영향을 미친다. 특히 고체연료의 난류화염면의 위치와 폭, 그리고 비 예혼합 난류화염장에서 생성되는 soot의 체적분율의 예측은 난류연소모델, 열전달 모델, 그리고 regression율 모델에 의해 크게 영향을 받기 때문에 수치모델의 예측 능력 향상시키기 위하여 이러한 물리적 과정을 정확히 모델링해야 할 필요가 있다. 특히 vortex hybrid rocket내의 난류연소과정은 아래와 같은 Laminar Flamelet Model에 의해 모델링 하였다. 상세 화학반응 과정을 고려한 혼합분율 공간에서의 화염편의 화학종 및 에너지 보존 방정식은 다음과 같다. 화염편 방정식과 혼합분률과 scalar dissipation rate의 관계식을 이용하여 혼합분률과 scalar dissipation rate에 따른 모든 reactive scalar들을 구하게 된다. 이러한 화염편 방정식들을 mixture fraction space에서 이산화시켜서 얻은 비선형 대수방정식은 TWOPNT(Grcar, 1992)로 계산돼 flamelet Library에 저장되게 된다. 저장된 laminar flamelet library를 이용하여 난류화염장의 열역학 상태량 평균치는 presumed PDF approach에 의해 구해진다. 본 연구에서는 강한 선회유동을 가지는 Hybrid Rocket 연소장내의 난류와 화학반응의 상호작용을 분석하기 위하여 Laminar Flamelet Model, 화학평형모델, 그리고 Eddy Dissipation Model을 이용한 수치해석결과를 체계적으로 비교하였다. 또한 Laminar Flamelet Model과 state-of-art 물리모델들을 이용하여 선회 유동을 갖는 하이브리드 로켓 엔진의 연소 및 Soot 생성 및 산화과정을 살펴보았으며 복사 열전달이 고체 연료 표면의 regression율에 미치는 영향도 살펴보았다. 특히 swirl강도, 산화제의 유입위치 그리고 선회유동의 형성방식이 하이브리드 로켓의 연소특성 및 regression rate에 미치는 영향을 상세히 해석하였다.

  • PDF

A Study on the Flash Over Delay Method for a Previously Constructed Building with Sandwich Panel Structure (샌드위치패널구조 기축건축물의 플래시오버 지연 공법 연구)

  • Kim, Do-Hyun;Cho, Nam-wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.71-80
    • /
    • 2017
  • The purpose of this study is to applied reinforcement method at the joint part of the sandwich panel. Becasue the joint part of the sandwich panel has a disadvantage that flame spreads fast inside steel plates in the event of fire, leading to a big fire rapidly. In this study, the combustion performance was measured through KS F ISO 13784-1 "Reaction-to-fire tests for sandwich panel building systems" according to the application of reinforcement method to prevent flame from being brought into the internal joint of the sandwich panel. For the reinforcement inside the panel, the tape produced using expanded graphite-based heat-expandable glass fiber was attached. As a result, it was confirmed that the prevention of flame from being brought into the internal joint could delay the flash over time and the collapse of the test specimen.

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

Analysis of Cause of Fire and Explosion in Internal Floating Roof Tank: Focusing on Fire and Explosion Accidents at the OO Oil Pipeline Corporation (내부 부상형 저장탱크(IFRT) 화재·폭발사고 원인 분석: OO송유관공사 저유소 화재·폭발사건을 중심으로)

  • Koo, Chae-Chil;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.86-93
    • /
    • 2020
  • This study aims to maintain the safety of an outdoor storage tank through the fundamental case analysis of explosion and fire accidents in the storage tank. We consider an accident caused by the explosion of fire inside the tank, as a result of the gradual spreading of the residual fire generated by wind lamps flying off a workplace in the storage tank yard. To determine the cause of the accident, atmospheric diffusion conditions were derived through CCTV image analysis, and the wind direction was analyzed using computational fluid dynamics. Additionally, the amount of oil vapor inside the tank when the floating roof was at the lowest position, and the behavior of the vapor inside the tank when the floating roof was at the highest position were investigated. If the cause of the explosion in the storage tank is identified and the level of the storage tank is maintained below the internal floating roof, dangerous liquid fills the storage tank, and the vapor in the space may stagnate on the internal floating roof. We intend to improve the operation procedure such that the level of the storage tank is not under the Pontoon support, as well as provide measures to prevent flames from entering the storage tank by installing a flame arrester in the open vent of the tank.

Spray and Combustion Characteristics of Liquid Jet in Cross Flow (횡단류에 분사되는 액체 제트의 분무 및 연소 특성)

  • Lee, Gwan-Hyeong;Kim, Du-Man;Gu, Ja-Ye;Hwang, Jin-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.12
    • /
    • pp.48-58
    • /
    • 2006
  • The spray and combustion characteristics of liquid jet in cross flow with variation of injection angle are numerically studied. Numerical analysis was carried out using KIVA code, which may be used to generate numerical solutions to spray and chemical reactive fluid problem in three space dimensions and modified to be suitable for simulating liquid jet ejected into the cross flow. Wave model and Kelvin- Helmholtz(KH) /Rayleigh-Taylor(RT) hybrid model were used for the purpose of analyzing liquid column, ligament, and the breakup of droplet. Penetration length increases as flow velocity decreases and injection velocity increases. Numerical error increases as inflow velocity increases. The results of flame propagation contour in combustion chamber and local temperature distribution, combustion emissions were obtained.

Changes in Fire Characteristics according to the Distance Between the Fire Source and Sidewall in a Reduced-Scale Compartment (축소 구획실에서 화원과 측벽의 거리에 따른 화재특성 변화)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-59
    • /
    • 2019
  • Experimental and numerical studies on the fire characteristics according to the distance between the fire source and sidewall under the over-ventilated fire conditions. A 1/3 reduced ISO 9705 room was constructed and spruce wood cribs were used as fuel. Fire Dynamics Simulator (FDS) was used for fire simulations to understand the phenomenon inside the compartment. As a result, the mass loss rate and heat release rate were increased due to the thermal feedback effect of the wall in the compartment fire compared to the open fire. As the distance between the fire source and sidewall was reduced, the major fire characteristics, such as maximum mass loss rate, heat release rate, fire growth rate, temperature, and heat flux, were increased despite the limitations of air entrainment into the flame. In particular, a significant change in these physical quantities was observed for the case of a fire source against the sidewall. In addition, the vertical distribution of temperature was changed considerably due to a change in the flow structure inside the compartment according to the distance between the fire source and sidewall.

A Study on Concurrent Fire Appearance through Openings (개구부를 통한 동시다발적인 화재성상에 관한 연구)

  • Min, Se-Hong;Lee, Jae-Moon
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.90-96
    • /
    • 2012
  • Since vertical flame spread speed on exterior materials is much faster than horizontal fire, analysis of its fire characteristic is required. For the study of vertical fire pattern created by penetrating windows or openings from the exterior wall of buildings, the research is based on the fire simulation for an aluminum-complex-panel with which is commonly used as exterior materials and consists of polyethylene core material. As a result, the flame reaches the 2nd floor after 135 seconds in the early stage of fire, the 10the floor after 470 seconds and the 30th floor, the highest floor, after 711 seconds. The result shows that fire spread abruptly expands on upper floor due to stack effect of a turbulent flow or exterior materials. In consequence, we can confirm a serious problem that a conflagration of a building through an opening that is equipped with the exterior-materials spreads into interior of building at that same time.