• Title/Summary/Keyword: 화염곡률

Search Result 14, Processing Time 0.015 seconds

A Study on Effects of Flame Curvature in Oscillatory Laminar Lifted-flames (진동하는 층류부상화염에서 화염곡률 효과에 관한 연구)

  • Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Yun, Jin-Han;Keel, Sang-In
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Experiment is conducted to grasp effects of flame curvature on flame behavior in laminar lifted-jet flames. Nozzle diameters of 0.1 and 1.0mm are used to vary flame curvature of edge flame. There exist three types of edge flame oscillation. These edge flame oscillations may be caused by radial heat loss at all flame conditions, by fuel Lewis numbers near or larger than unity with the help of appreciable radial conduction heat loss, and by buoyancy effects. These are confirmed by the analysis of oscillation frequencies. It is however seen that the change of lift-off height through edge-flame oscillation is mainly due to radial heat loss irrespective of Lewis number and buoyancy.

  • PDF

Effects of Fuel Nozzle Diameter in the Behavior of Laminar Lifted Flame (노즐 직경 변화가 층류부상화염 거동에 미치는 영향)

  • Kim, Tae-Kwon;Um, Hyen-Soo;Kim, Kyung-Ho;Ha, Ji-Soo;Park, Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.77-84
    • /
    • 2008
  • Experimental study was conducted to clarify the importance of buoyancy effects in laminar lifted flames which have been well understood by cold jet similarity theory. To evaluate buoyancy effects, lifted flame behaviors were systematically observed in methane and propane lifted flames diluted with He as changing the fuel nozzle diameter from 0.1 to 6 mm. Important physical parameters such as fuel strength, flame stretch and flame curvature, which were derived through simple physical scaling laws, were estimated. It is experimentally proven that buoyancy effects are important in relatively large fuel nozzle diameter and large fuel dilution with He. The results of Chen et al., which displayed the existence of stably lifted flames for 0.5

  • PDF

Evaluation of the Mechanical Characteristics According to the Curvature of Thermal Barrier Coating (가스터빈 블레이드 열차폐코팅의 곡률에 따른 기계적 특성 평가)

  • Lee, Jeng-Min;Seok, Chang-Sung;Koo, Jae-Mean;Kim, Sung Hyuk;Zhen, Guo;Tao, Shen;Moon, Wonki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1427-1430
    • /
    • 2014
  • A thermal barrier coating (TBC) prevents heat directly transferring from a high-temperature flame to a substrate. The TBC system comprises a top coating and bond coating. TBC technology reduces the substrate surface temperature by about $100{\sim}170^{\circ}C$. In the TBC system, internal stress is generated by the difference in thermal expansion coefficients of the substrate and coating. The internal stress also differs according to the shape and position of the blade. In this study, finite element analysis was performed for different curvatures of coin-shaped specimens, which are commonly used for thermal fatigue tests, and the changes in internal stress of the TBC system were compared. Based on the results, the curvature at which the minimum stress occurs was derived, and the thermal stress was confirmed to increase with the difference between a given curvature and the curvature with the minimum stress.

Ge-doped Boro-Phospho-Silicate Glass Micro-lens Array Produced by Thermal Reflow (가열용융 방법에 의한 Ge-BPSG 마이크로렌즈 어레이 제작)

  • Jeong, Jin-ho;Oh, Jin-Gyeong;Choi, Jun-Seok;Choi, Gi-Seon;Lee, Hyeong-Jong;Bae, Byeong-Seong
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.340-344
    • /
    • 2005
  • Microlens cells of Ge-doped BPSG (Boro-Phospho-Silicate Glass) are fabricated by dicing the film produced by FHD (Flame Hydrolysis Deposition). Microlens arrays of $53.4{\mu}m$ square unit are produced by the thermal reflow of the diced unit cells at $1200^{\circ}C$. The gap between the microlenses was about $70{\mu}m,$ and the thickness of the produced lens was about $28.4{\mu}m$. We analyzed the reflowed shape of the microlens cell by an image-process technique, and the focal length was about $62.2{\mu}m$. This method of fabricating a microlens is simple and inexpensive compared to the conventional method using the photolithographic process. Also, the control of the radius of curvature of the microlens is easier and a more precise microlens way of various types can be fabricated using this method.