• Title/Summary/Keyword: 화염계수

Search Result 38, Processing Time 0.025 seconds

A Study on the Improvment of Engine Performance Simulation Using Multi-Length-Scale Model and MOC (특성곡선법과 다중길이 척도법을 이용한 가솔린 기관의 기관성능시뮬레이션 개선에 관한 연구)

  • 김철수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.605-616
    • /
    • 2001
  • Generally, there are two methods in researching internal combustion engines. One is by experimental research and the other is by computer simulation. The experimental research has many merits that researchers can get data for engine performance, but it has also some demerit of cost and time. If there is an engine simulation code with accuracy for the solution, it is very convenient to predict the performance and optimum design value of the engine. In this study, engine performance simulation program has been improved to predict the transient variation of properties of gas in cylinder, intake and exhaust manifolds, There total program code was developed to calculate the pressure, flame factor and turbulent intensity, As a result of present study, the authors could predicted the in-cylinder pressure, intake manifold pressure and the engine performance in various conditions. The authors also could easily prepare the tool if optimum design of manifold and in-cylinder geometry.

  • PDF

Flame Diagnosis using Image Processing Technique (영상처리 기술을 이용한 연소상태 진단)

  • Lee, Tae-Young;Kim, Song-Hwan;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.196-202
    • /
    • 1999
  • Recent trend changes a criterion for evaluation of burner that environmental problem is raised as global issue. For efficient driving problem, the higher thermal efficiency and the lower oxygen in exhaust gas, burner is evaluated the better. For environmental problem, burner must satisfy $NO_{X}$ limit and CO limit. Consequently, 'good burner' means on whose thermal efficiency is high under the constraint of $NO_{X}$ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop feedback control scheme whose output is the consistency of $NO_{X}$ and CO. This paper describes development of real time flame diagnosis technique that evaluate and diagnose combustion state such as consistency of components in exhaust gas, stability of flame in quantitative sense. This study focuses on wave length of luminescence from chemical reaction measurement of the luminescence via optical measuring apparatus and derive correlation with consistency of components in exhaust gas by image processing technique.

  • PDF

A Study on the Influence of Turbulent Intensity on DOHC Engine Performance (DOHC 가솔린기관의 연소실 난류특성이 기관성능에 미치는 영향에 관한 연구)

  • Kim, C.S.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.12-23
    • /
    • 1994
  • In order to investigate the effect of turbulent intensity on combustion characteristics, new flame factor model was developed. The principal study is the evaluation of interaction of swirl, tumble and unstrutural component of flow characteristics and correlation between turbulent intensity and flame factor. Computational and experimental study has been, performed such as quasi-dimensional cycle simulation, three dimensional flow analysis, engine performance test and diagnostic simulation. From these studies, it was found that flame factor was a function of engine speed and turbulent intensity.

  • PDF

A Study on the Prediction of Self-absorption in Opposed Flames Using WSGGM-Based Spectral Model (파장별 회체가스중합모델을 이용한 대향류 화염에서의 복사 흡수 예측에 관한 연구)

  • Kim, Uk-Jung;Viskanta, Raymond;Gore, Jay Prabhakar;Zhu, Xuelei
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.600-609
    • /
    • 2001
  • WSGGM based low-resolution spectral model for calculating radiation transfer in combustion gases is applied to estimate self-absorption of radiation energy in one-dimensional opposed flow flames. Development of such a model is necessary in order to enable detailed chemistry-radiation interaction calculations including self-absorption. Database of band model parameters which can be applied to various one-dimensional opposed flow diffusion and partially premixed flames is created. For the validation of the model and database, low resolution spectral intensities at fuel exit side are calculated and compared with the results of a narrow band model with those based on the Curtis-Godson approximation. Good agreements have been found between them. The resulting radiation model is coupled to the OPPDIF code to calculate the self-absorption of radiant energy and compared with the results of an optically thin calculation and the results of a discrete ordinates method in conjunction with the statistical narrow band model. Significant self-absorption of radiation is found for the flames considered here particularly for the fuel side of the reacting zone. However, the self-absorption does not have significant effects on the flame structure in this case. Even in the case of the low velocity diffusion flame and the partially premixed flame of low equivalence ratio, the effects of self-absorption of radiation on the flame temperature and production of minor species are not significant.

Calculation of the Absorption Coefficient and Weighting Factor Expressing the Total Emissivity of Flame (화염의 총괄폭사 계수를 나타내는 급수계수 및 가중치의 계산)

  • 하만영;허병기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.121-130
    • /
    • 1986
  • Using the sbsorption coefficients and the weighting factors of the gray gas, the total emissivities of C $O_{2}$- $H_{2}$O and C $O_{2}$- $H_{2}$O- transient species-soot gas mixtures can be expressed by the following equation, [a numerical formula] Where, $a_{i}$ and $K_{i}$ represent the weighting factor and the absorption coeffient of i-gray gas respectively; L is the pathlength of the gas. This equation is widely used for the analyses of the radiation heat transfer in the combustors of internal combustion engines and in the furnace of external combustion engines. In this work, a simple calculation model of the weighting factor and the absorption coeffient of the above equation was developed. The weighting factors and the absorption coefficients of combustion products were calculated by applying the model to various kinds of fossil fuels such as coal and heavy oil. Then, the computed total emissivities for each fuel and pathlength were compared with measured and calculated values which have been already published in the literatures. The followings were the results obtained through the comparisons between the calculated emissivites and the published values; the developed model for the calculations of the weighting factor and the absorption coefficient of C $O_{2}$- $H_{2}$O and C $O_{2}$- $H_{2}$O- transient species-soot gas mixtures could be applied over the wide ranges of the temperature and the pathlength; the errors between the total emissivities calculted and the values published were maximum 10%, and average 1%, respectively.

A Formulation and Performance Characteristics of Composite Solid Propellant for an Application to Gas Generators (기체발생기용 복합고체추진제의 조성 및 성능특성 연구)

  • Kim, Jeong-Soo;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.181-184
    • /
    • 2009
  • A development of a composite solid propellant is carried out for an application to gas generators as an energy source of rocket system. With HTPB as a propellant binder which has 80% of particle loading ratio, a favorable rheology, and moderate curing properties at the range of $-50^{\circ}C{\sim}70^{\circ}C$, AN is selected as the first kind of oxidizer having the characteristics of a low flame temperature, minimal particle residual as well as nontoxic products. AP is the second oxidant for ballistic property control. A series of experiments for the improvement of physical properties were conducted and resulted in the propellant formulation having 30% of strain rate at 8 bar of max. stress.

  • PDF

Pre-detection Parameter of the Combustion Instabilities in the Gas Turbine Combustor (덤프형 가스터빈 연소기에서의 화염 불안정성의 사전 감지 인자)

  • Lee, Byeong-Jun;Santavicca, D.A.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.750-756
    • /
    • 2002
  • The effect of equivalence ratio and velocity on the stability of flame in dump combustor was studied in an atmospheric pressure, laboratory scathe dump combustor operating natural gas. Traditionally, peak-to-peak pressure, fluctuation of the heat release rate and Rayleigh index were used to find and control the combustion instability. Cross correlation coefficients, Ci,j which is defined as the normalized value of the integration of the product of two of the mixer pressure, dump plane pressure and heat release rate, are introduced to see whether the flame is stable or not. Ci,j shows more sensitive to combustion status than Rayleigh index in steadily burning flame. Also, the result indicates that the amplitude of Ci,j between heat release and mixer pressure goes up before the flame at the rich de-stabilizing equivalence ratio near $\psi$=0.85. t means Ci:j at this case has a potential to detect the de-stablizing moment in prior to becoming unstable in dump combustor.

A Study on Preferential Diffusion Effects in $H_2/CO/CO_2$ Syn-gas Flames ($H_2/CO/CO_2$ 합성가스화염에서 선호확산 효과에 관한 연구)

  • Kim, Tae-Kwon;Park, Jeong;Ha, Ji-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.737-746
    • /
    • 2008
  • Numerical study is conducted to grasp preferential diffusion effects on flame characteristics in $H_2/CO$ syn-gas diffusion flames diluted with $CO_2$. The models of Sun et al. and David et al., which have been well known to be best-fitted for $H_2/CO$ synthetic mixture flames. are evaluated for $H_2/CO$ synthetic mixture flames diluted with $CO_2$. Comparison of flame structures with mixture-averaged species diffusion and suppression of the diffusivities of $H_2$ and H was made. The behaviors of maximum flame temperatures with those species diffusion models are not explained by scalar dissipation rate but by the nature of chemical kinetics. Importantly-contributing reaction steps to heat release rate are also compared for the three species diffusion models in $H_2/CO/CO_2$ flames with and without $CO_2$ dilution.

A Study on the Evaluation of the Friction and Wear Properties of the Sprayed Coating Layer (용사피막의 마찰.마모 특성 평가에 관한 연구)

  • 김영식;김윤해;김종호;최영국;강태영
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.66-74
    • /
    • 1996
  • In this study, friction and wear properties of flame sprayed specimens and hard Cr plating specimens were tested, and their properties were compared each other in dry and lubrication condition. Ni-Cr powder and steel powder were used as the spray powder and sprayed on the steel(S45C) substrate by flame sprayed method. Each wear surface was observed with SEM after friction and wear test. The friction coefficient of the as-forged steel specimens was the highest among surface treatment specimens, and the other specimens appeared in order as follows ; hard Cr-plating specimens, Ni-Cr powder sprayed specimens, steel powder sprayed specimens. Comparing the wear volumes in dry condition, as forged steel specimens appeared the greatest wear volume, and the other specimens appeared wear volume in order as follows ; Ni-Cr powder sprayed specimens, steel powder sprayed specimens, hard Cr plating specimens. In friction and wear test, the hard Cr plating specimens were worn by the abrasive phenomenon, involving the cracks. The wear volume of steel powder sprayed specimens was lower than that of Ni-Cr powder sprayed specimens. Comparing the tensile strength of both sprayed coating layers, the steel powder sprayed coating layer was better than Ni-Cr powder sprayed coating layer.

  • PDF

The Premixed Flame in a Radiatively Active Porous Medium (복사열전달을 동반하는 다공성 매질내의 예혼합 화염)

  • 김정수;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.265-270
    • /
    • 1989
  • The present study considers the thermal structure variation in a porous medium caused by changing the most important radiative property of porous medium, absorption coefficient, as well as altering the physical dimension of porous medium and the equivalence ratio of premixed gas mixture. The radiation model was introduced as an unsteady differential form using the two-flux gray radiation model. The role of the conductive heat transfer through both gas phase and porous medium was found to be almost insignificant compared with that of the radiative heat transfer. The reaction zone shifted upstream and the flame thickness decreased as either the geometrical length of porous medium increased or the absorption coefficient decreased.