• 제목/요약/키워드: 화소기반

Search Result 693, Processing Time 0.025 seconds

Color Image Analysis of Histological tissue Sections (해부병리조직에 대한 칼라 영상분석)

  • Choe, Heung-Guk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.1
    • /
    • pp.253-260
    • /
    • 1999
  • In this paper, we suggest a new direct method for mage segmentation using texture and color information combined through a multivariate linear discriminant algorithm. The color texture is computed in nin 3${\times}$3 masks obtained from each 3${\times}$3${\times}$3 spatio-spectral neighborhood in the image using the classical haralick and Pressman texture features. Among these 9${\times}$28 texture features the best set was extracted from a training set. The resulting set of 10 features were used to segment an image into four different regions. The resulting segmentation was Compared to classical color and texture segmentation methods using both box classifiers and maximum likelihood classification. It compared favourably on the test image from a Fastred-Lightgreen stained prostatic histological tissue section based on visual inspection. The classification accuracy of 97.5% for the new method obtained on the training data was also among the best of the tested methods. If these results hold for a larger set of images, this method should be a useful tool for segmenting images where both color and texture are relevant for the segmentation process.

  • PDF

Spectral Mixture Analysis Using Modified IEA Algorithm for Forest Classification (수정된 IEA 기반의 분광혼합분석 기법을 이용한 임상분류)

  • Song, Ahram;Han, Youkyung;Kim, Younghyun;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.219-226
    • /
    • 2014
  • Fractional values resulted from the spectral mixture analysis could be used to classify not only urban area with various materials but also forest area in more detailed spatial scale. Especially South Korea is largely consist of mixed forest, so the spectral mixture analysis is suitable as a classification method. For the successful classification using spectral mixture analysis, extraction of optimal endmembers is prerequisite process. Though geometric endmember selection has been widely used, it is barely suitable for forest area. Therefore, in this study, we modified Iterative Error Analysis (IEA), one of the most famous algorithms of image endmember selection which extracts pure pixel directly from the image. The endmembers which represent deciduous and coniferous trees are automatically extracted. The experiments were implemented on two sites of Compact Airborne Spectrographic Imager (CASI) and classified forest area into two types. Accuracies of each classification results were 86% and 90%, which mean proposed algorithm effectively extracted proper endmembers. For the more accurate classification, another substances like forest gap should be considered.

Adaptive Noise Removal Based on Nonstationary Correlation (영상의 비정적 상관관계에 근거한 적응적 잡음제거 알고리듬)

  • 박성철;김창원;강문기
    • Journal of Broadcast Engineering
    • /
    • v.8 no.3
    • /
    • pp.278-287
    • /
    • 2003
  • Noise in an image degrades image quality and deteriorates coding efficiency. Recently, various edge-preserving noise filtering methods based on the nonstationary image model have been proposed to overcome this problem. In most conventional nonstationary image models, however, pixels are assumed to be uncorrelated to each other in order not to Increase the computational burden too much. As a result, some detailed information is lost in the filtered results. In this paper, we propose a computationally feasible adaptive noise smoothing algorithm which considers the nonstationary correlation characteristics of images. We assume that an image has a nonstationary mean and can be segmented into subimages which have individually different stationary correlations. Taking advantage of the special structure of the covariance matrix that results from the proposed image model, we derive a computationally efficient FFT-based adaptive linear minimum mean-square-error filter. Justification for the proposed image model is presented and effectiveness of the proposed algorithm is demonstrated experimentally.

Block Loss Recovery Using Fractal Extrapolation for Fractal Coded Images (프랙탈 외삽을 이용한 프랙탈 부호화 영상에서의 블록 손실 복구)

  • 노윤호;소현주;김상현;김남철
    • Journal of Broadcast Engineering
    • /
    • v.4 no.1
    • /
    • pp.76-85
    • /
    • 1999
  • The degradation of image quality by block loss is more serious in fractal coded images with the error propagation due to mapping from the lost blocks than in DCT coded images. Therefore. a new algorithm is presented for recovering the blocks lost in the transmission through the lossy network as A TM network of the images coded by Jacquins fractal coding. Jacquins fractal code is divided into two layers of header code and main code according to its importance. The key technique of the proposed BLRA (block loss recovery algorithm) is a fractal extrapolation that estimates the lost pixels by using the contractive mapping parameters of the neighboring range blocks whose characteristics are similar to a lost block. The proposed BLRA is applied to the lost blocks in the iteration of decoding. Some experimental results show the proposed BLRA yields excellent performance in PSNR as well as subjective quality.

  • PDF

Reliable State Estimation Method using Stereo Vision-Based Virtual Model Extended Kalman Filter (스테레오 비전 기반 가상 모델 확장형 칼만 필터를 이용한 안정된 상태 추정 방법)

  • Lim, Young-Chul;Lee, Chung-Hee;Lee, Jong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.21-29
    • /
    • 2011
  • This paper presents a method that estimates distance and velocity of an object with reliability regardless of maneuver status of the target in stereo vision system. A stereo vision system can calculate a distance with disparity from left and right images. However, the distance estimation error may occur due to quantization error of image pixel. A sub-pixel interpolation method minimizes the quantization error and estimates accurate disparity with real value. Extended Kalman filter (EKF) was used to minimize the error covariance and estimate the object's velocity. However, divergence problem occurs due to model uncertainty when a target maneuvers highly, which makes the estimation error increase. In this paper, we propose a virtual model extended Kalman filter (VMEKF) method that minimizes the processing time and provides reliable estimation ability regardless of maneuver status. Computer simulations and experimental results in real road environments demonstrate that the proposed method gives a reliable estimation performance and reduces processing time under various maneuver status while comparing other estimation filters.

Studies on the millimeter-wave Passive Imaging System II (밀리미터파 수동 이미징 시스템 연구 II)

  • Jung, Min-Kyoo;Chae, Yeon-Sik;Kim, Soon-Koo;Yoo, Jin-Seob;Koji, Mizuno;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.105-110
    • /
    • 2007
  • We have built the millimeter-wave passive imaging system with a lens and mechanical scan antenna. The lens was designed based on optical theory in order to focus millimeter-wane. A full image was taken from image points scanned by Placing antenna at the representative focal plane selectively. An integrated antenna array device for low-loss and low-noise with the array of 4 by 1, where components such as antenna, balun, MMIC, and detector were assembled on a sin91e substrate, and a fermi tapered slot antenna with high-gain and low-side lobe were used for elements of this millimeter-wave passive imaging system. Two dimensional antenna arrangement on focal plane was achieved in this imaging system.

The Applicability for Earth Surface Monitoring Based on 3D Wavelet Transform Using the Multi-temporal Satellite Imagery (다중시기 위성영상을 이용한 3차원 웨이블릿 변환의 지구모니터링 응용가능성 연구)

  • Yoo, Hee-Young;Lee, Ki-Won
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.560-574
    • /
    • 2011
  • Satellite images that have been obtained periodically and continuously are very effective data to monitor the changes of Earth's surface. Traditionally, the studies on change detection using satellite images have mainly focused on comparison between two results after analyzing two images respectively. However, the interests in researches to catch smooth trends and short duration events from continual multi-temporal images have been increased recently. In this study, we introduce and test an approach based on 3D wavelet transform to analyze the multi-temporal satellite images. 3D wavelet transform can reduce the dimensions of data conserving main trends. Also, it is possible to extract important patterns and to analyze spatial and temporal relations with neighboring pixels using 3D wavelet transform. As a result, 3D wavelet transform is useful to capture the long term trends and short-term events rapidly. In addition, we can expect to get new information through sub-bands of 3D wavelet transform which provide different information by decomposed direction.

A Study on the Performance Improvement of Image Segmentation by Selective Application of Structuring Element in MPEG-4 (MPEG-4 기반 영상 분할에서 구조요소의 선택적 적용에 의한 분할성능 개선에 관한 연구)

  • 이완범;김환용
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.165-173
    • /
    • 2004
  • Since the conventional image segmentation methods using mathematical morphology tend to yield over-segmented results, they normally need postprocess which merges small regions to obtain larger ones. To solve this over-segmentation problem without postprocess had to increase size of structuring element used marker extraction. As size of structuring element is very large, edge of region segments incorrectly. Therefore, this paper selectively applies structuring element of mathematical morphology to improve performance of image segmentation and classifies input image into texture region, edge region and simple region using averaged local variance and image gradient. Proposed image segmentation method removes the cause for over-segmentation of image as selectively applies size of structuring element to each region. Simulation results show that proposed method correctly segment for pixel region of similar luminance value and more correctly search texture region and edge region than conventional methods.

A Robust Blind Watermarking for Digital Image Using DWT According to its Resolution (해상도에 따른 DWT 기반 디지털 영상의 강인성 블라인드 워터마킹)

  • Lee, Yongseok;Seo, Youngho;Kim, Dongwook
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.888-900
    • /
    • 2015
  • This paper proposes a blind watermarking scheme using DWT satisfying robustness, invisibility, and security to protect the ownership of digital image contents. This scheme does not determine any watermarking position by local image information. It rather inserts the watermark information into all the four lowest frequency subbands after transforming the host image by n-level 2-dimensional DWT, depending on, the sizes of the host image and the watermark data. Its watermark insertion methodology uses some weighting factors according to the kind of the subband and its energy level to adjust the invisibility and the robustness of the watermark. This method is experimented for various pixel-value change attacks and geometric attacks with various images having different resolutions and aspect ratios. With the experimental results and by comparing with existing methods, we show that the proposed method has a great deal of general usage with good watermark invisibility and good robustness against attacks.

Gradient-Based Methods of Fast Intra Mode Decision and Block Partitioning in VVC (VVC의 기울기 기반 화면내 예측모드 결정 및 블록분할 고속화 기법)

  • Yoon, Yong-Uk;Park, Dohyeon;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.338-345
    • /
    • 2020
  • Versatile Video Coding (VVC), which has been developing as a next generation video coding standard, has adopted various techniques to achieve more than twice the compression performance of HEVC (High Efficiency Video Coding). The recently released VVC Test Model (VTM) shows 38% Bjontegaard Delta bitrate (BD-rate) improvement and 9x/1.6x encoding/decoding complexity over HEVC. In order to reduce such increased complexity, various fast algorithms have been proposed. In this paper, gradient-based methods of fast intra mode decision and block splitting are presented. Experimental results show that, compared to VTM6.0, the proposed method gives up to 65% encoding time reduction with 3.54% BD-rate loss in All-Intra (AI) configuration.