• Title/Summary/Keyword: 화산폭발지수

Search Result 14, Processing Time 0.019 seconds

Understanding Impact of the Volcanic Eruption of Nishinoshima, Japan on Air Quality in the South Korean Peninsula (일본 니시노시마 화산 분화에 의한 한반도 남부 대기질 영향 분석)

  • Cheolwoo Chang;Sung-Hyo Yun
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.196-209
    • /
    • 2023
  • The Nishinoshima volcano, located 940 km south of Tokyo, experienced an eruption from June to August 2020. The volcanic gas and ash from the eruption of Nishinoshima that occurred at the end of July 2020 was reported to have the potential to affect the Korean Peninsula. In this study, we used Ash3D, a numerical simulation program for volcanic ash dispersion, to investigate the eruption that occurred at 0:00 local time on July 28, 2020, with a volcanic explosivity index of three. The results showed that the volcanic ash cloud reached Okinawa on the morning of July 30, carried by an east wind. It then moved northward and reached Jeju Island on August 1, eventually circulating in a clockwise direction and reaching southern part of the Korean Peninsula on August 2. The concentration of Particulate Matter 10 (PM10), measured at the Jeju Gosan Meteorological Observatory in Jeju Island, increase from August 1. A similar increase in PM10 concentration was observed at the Gudeok Mountain Weather Station in Busan from August 2. These findings suggested that eruption of the Nishinoshima volcano had an impact on the fine dust concentrations at Jeju Island and southern part of the Korean Peninsula.

A Case Analysis of Volcanic Ash Dispersion under Various Volcanic Explosivity Index of the Mt. Baegdu (백두산 분화 강도에 따른 화산재 확산 사례 분석)

  • Lee, Soon-Hwan;Jang, Eun-Suk;Lee, Hyun-Mi
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.280-293
    • /
    • 2012
  • In order to clarify the characteristics of dispersion of volcanic tephra emitted from the Mt. Baegdu with various eruption environment, numerical analysis were performed using numerical models, Weather Research and Forecast (WRF) and FLEXPART. Synoptic conditions at 12 October 2010 was adopted because the volcanic ash of Mt. Baegdu can reach the Korean peninsula and its dispersion pattern was compared with different Volcanic Explosivity Index (VEI) and particle size. Predominant size of falling out ash flowing in the peninsular is smaller than 0.5 mm and the ash large than the size is difficult to get in the peninsular due to the its weak ability of truculent diffusion. the difference of ash distribution with various VEI scenarios is not so much but number density of ash in the air is dramatically changed. Volcanic ash tends to be deposited easily in eastern coastal area such as Gangneung and Busan, because of the inflow of ash from East Sea and barrier effect of the Taeback mountains along the east coast of the Korean Peninsula. Accumulated amount of ash deposition can be increased in short period in several urban areas.

TITAN2D Simulations of Pyroclastic Flows from Small Scale Eruption at Mt. Baekdusan (백두산에서 소규모 분화로 발생 가능한 화쇄류에 대한 TITAN2D 시뮬레이션 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Kim, Sunkyeong;Chang, Cheolwoo;Cho, Eunil;Yang, Innsook;Kim, Yunjeong;Kim, Sanghyun;Lee, Kilha;Kim, Seongwook;Macedonio, Giovanni
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.615-625
    • /
    • 2013
  • Many eruptions of Mt. Baekdusan volcano have been recorded in the historical literatures, and there were unrest precursors in 2002. Based on the geological survey results, it has been recognized that Mt. Baekdusan's Plinian eruptions had caused ashfall, followed by the occurrence of pyroclastic flows, which were caused by the collapse of eruption column. Therefore, we simulated the range of the impacts of pyroclastic flows, which were caused by small eruptions from a specific crater. Based on the simulation results, it can be interpreted that, when the pyroclastic flows are caused by the eruption column collapse from an eruption with less than VEI 3, the impacts will range from the outer rim of the caldera to the mountain slope 7 km at the maximum distance. Furthermore, it is interpreted that, when the eruption column occurs by the crater located inside the caldera, most will be deposited inside the caldera and what overflows will be deposited thickly mostly in the north valley, the upper stream region of Erdaobaihe.

Analysis of Blasting Vibration at the Irregular Layered Structure Ground (불규칙한 층상구조 지반에서의 발파진동 분석)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.891-901
    • /
    • 2016
  • By comparing test blasting data experimented in three layered-structure polymorphic grounds to a geological profile, influence of blast vibration with respect to uncontrollable ground characteristics was analyzed. Inefficient blast have been performed without sufficient verifications or confirmations because insufficiencies with regard to experiments and data of blasting engineering on the layered structures to be irregularly repeated clinker layer consisted of volcanic clastic zones. It is difficult to quantify N values of clinkers within test blasting region because they have diverse ranges, or coverages. An absolute value of attenuation coefficient N in a field, estimated by blasting vibration predictive equation (SRSD), are lesser than criteria of a design instruction, meaning that vibrations caused by blast can spread far away, and the vibrational characteristics of blasting test No.1, indicating relatively small values, inferred by the geological profile, pressures of gas by the explosion may be lost into a widely distributed clinker layers by penetrating holes resulted from blast into vicinity of clinker layers located in bottom of soft rock layers at the moment of blast. As a result, amounts of spalling rocks are decreased by almost half. Also, ranges of primary frequencies in the fields are identified as similar to those of natural frequency of typical structures.