• Title/Summary/Keyword: 화산쇄설암

Search Result 32, Processing Time 0.018 seconds

Characterization of Noerog, A Traditional Green Mineral Pigment (전통 녹색 석채로 사용된 "뇌록"의 특성연구)

  • Do, Jin-Young;Lee, Sang-Jin;Kim, Soo-Jin;Yun, Yun-Kyung;Ahn, Byung-Chan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.271-281
    • /
    • 2008
  • The "Noerog", a traditional green mineral pigment occurs as veins or cavity-filings in the basaltic pyroclastic rocks of Quaternary Epoch in Mt. Noeseong in Janggi-myeon, Pohang. The "Noerog stone" mainly consists of celadonite with minor chlorite/smectite, mordenite and opal. Celadonite grains are several hundreds to several tens of ${\mu}m$ in size. The particle sizes under several tens of fm are likely to coagulate to aggregates. The coloring rate increases rapidly with decreasing particle size under $71{\mu}m$. The hiding power is maximum in the particle sizes of $0.2\sim0.3{\mu}m$. The resistance properties of the Noerog to both the light and the bacteria are absolutely superior to ordinary chemical pigments. The transparency of the Noerog is maximum in the nano-powders under 200 nm. Examination of the color of the Noerog pigment which has been prepared by traditional technique for "dancheong" shows that the best coloring effect is found in the particle sizes under $32{\mu}m$ and that the painting was not successful for the Noerog of particle size over $32{\mu}m$.

Mineralogy and Genesis of the Sungsan Clay Deposits (聲山납석광상의 광물학적 및 성인적 연구)

  • Cho, Hyen-Goo;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.14-24
    • /
    • 1994
  • The Sungsan clay deposits have been formed by the hydrothermal alteration of volcanic and volcanoclastic rocks of the Hwangsan Formation of Cretaceous age. Claystones are mainly composed of dickite, alunite, illitic minerals and tosudite. The mineralogical properties of clay minerals have been studied using X-ray diffraction analysis, electron microscopy, electron microprobe analysis, and infrared absorption analysis. The physicochemical condition for the clay deposits also have been studied by the activity diagrams and mineral assemblages. Dickite, the dominant mineral in clay deposits, occurs generally as massive aggregates. It shows book-structure of well-defined hexagonal plates. Chemistry of dickite agrees with its ideal formula. Peak depth ratios in infrared absorption spectra were used for discrimination between pure and mixture of kaolin minerals. Five hydrothermal alteration zones are divided according to the mineral assemblages. From center to margin, alunite, dickite, illite and albite zones are discernible. Quartz zone occurs as small lenticular form in dickite zone. The formation of dickite and illite zones are promoted by decreasing $a_{k^+}$. An increase in $a_{H_{2}SO_{4}}$ or $a_{K_{2}SO_{4}}$ is required for the formation of alunite zone. Estimated temperature of formation ranges 110-270 $^{\circ}C$

  • PDF

Weathering Characteristics of Rocks near Churyong Tunnel Site, Kyongbuk, using Geophysical and Geochemical Methods (경북 추령터널 부근 암석의 풍화특성에 관한 지구물리화학적 연구)

  • 서만철;김민규;최석원
    • The Journal of Engineering Geology
    • /
    • v.4 no.3
    • /
    • pp.269-281
    • /
    • 1994
  • Microscopic study and X-ray diffraction analysis were carried out to find out rock type, tock forming minerals; and weathering characteristics of rocks at the constructing site of the churyong Tunnel, Kyongju-Gun, Kyongbuk. Seismic velocity and compressional strength were measured to evaluate mechanical properties of rock. The rock of the study area is Jurassic tuff consisting of clay minerals, crystals of quartz and feldspar, fragments of volcanic rocks and shale. Fresh tuff has compressional strength of about $443kg/\textrm{cm}^2$ and seismic velocity of about 3680m/sec in average. It is classified as soft rock. Rock fragment within tuff is andesite and it has compressional strength of about $2500kg/\textrm{cm}^2$ and seismic velocity of about 4340m/sec in average. It is classified as hard rock. A good linear relationship is found between compressional streangth and seismic velocity in both laboratory sample and in-situ rocks. Laboratory samples has seismic velocities faster about 1.5km/sec than those in-situ rocks. It is interpreted that joints, fractures, and water content in the in-situ rocks result in decreas of seismic velocity. As Tuff has more than 50% of clay minerals in matrix and shale fragments, it absorbs water easily in atmospheric condition. Therefore, though the rock in the study area is medium hard rock before weathering, it is weathered very easily in the case of exposure to natural environment, comparing with other rock.

  • PDF

Petrographical study for the enclaves of the granitic rocks, in the Gyeongsang Basin, Korea (경상분지 화강암류에서 발견되는 엔클레이브(포유암)에 대한 암석기재적 연구)

  • 김종선;김건기;좌용주;이준동
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • In this study we propose that the ‘enclaves’ which occur in the granites should be translated into ‘Po-yu-am’in Korean. Also we suggest some criteria to discriminate the mafic microgranular enclaves (MME) of igneous origin from the xenoliths, which possibly come from the plutonic, volcanic and sedimentary country rocks. The color of the MME is gray green∼dark gray and the mineral grains are fine and equigranular. The MME are generally of ellipsoidal shape and can be easily found within the granites. They do not show any evidence of contact metamorphism by granite host. On the other hand. the xenoliths are generally of angular shape and are of the same mineral assemblage and texture as the country rocks around the granites. The distribution of the xenoliths is mostly concentrated along the intruding plane of the granites near the country rocks. The xenoliths were partly metamorphosed by the granite intrusion. The xenoliths from the plutonic rocks are easily distinguished from the MME in terms of their angular shape and coarser grain size, but they do not have any metamorphic mineral assemblage and texture. The xenoliths from the tuffaceous rocks show angular shape and porphyritic and pyroclastic textures. Large size xenoliths from the sedimentary rocks specifically preserve bedding structure which are indicative of the sedimentary strata. However, the sedimentary xenoliths of small size are often difficult to distinguish from the MME. Metamorphic minerals and texture are a useful key to discriminate the small-sized sedimentary xenoliths from the MME. In summary the xenoliths in the granites can be megascopic ally distinguished from the MME by comparing their color, shape, grain size and remnant original structure like bedding. Additionally the metamorphic mineral assemblage and texture are microscopic discriminators between the xenoliths and the MME in the granites.

Buffer Capacity of So Horizon Soils of Andisols from Jeju Island: Solubility Effect of Mineral Phases (제주도 Andisols Bo층 토양의 산성화에 대한 완충능력: 광물상 용해도 특성의 영향)

  • 이규호;송윤구;문지원;문희수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.114-121
    • /
    • 2002
  • Buffer capacities for two Bo horizon soils or Andisols developed from different parent materials have been investigated. The titration curves from column leaching experiment show that buffering occurred at pH 4.0 and 6.0. The buffer intensity or soil developed from pyroclastic materials (P-soil) is higher than that from basalts (B-soil). From batch test we have found that proto-imogolite and/or imogolite may control Al solubility as well as $Al(OH) _3$in the moderate acid condition. The buffer intensities ($\beta$) of P-soils were plotted on the theoretical buffering curve of $Al(OH)_3$, while $\beta$ of B-soils approached to that of proto-imogolite, which shows the solubility of short-range-order materials in P-soil control the buffer capacity. Buffering at pH 6.0 is thought to be the result of dissolution of some silicate clays and exchange reactions between $H^{+ }$and base-forming cations. Considering the amount of annual acid precipitation, aluminum solubility of Andisols, and the low BS (Base Saturation percentage), it can be predicted that prolonged acid precipitation will reduce the buffer capacity of soils and lead to soil acidification.

Deterioration Evaluation and Material Characteristics of the Usuki Stone Buddha Statues in Oita, Japan (일본 오이타현 우스키 마애불상군의 재질특성 및 손상도 평가)

  • Cho, Ji-Hyun;Lee, Chan-Hee;Kim, Ji-Young;Morii, Masayuki;Lee, Myeong-Seong;Kim, Sa-Dug
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.39-52
    • /
    • 2012
  • The Usuki Stone Buddha Statues in Oita are consisted of 60 Buddhas which represent of Japan carved on the rock-cliff in the 12 to 14th centuries. The basement rock of the statues is dark gray welded lapilli tuff that containing the Aso-4 pyroclastic rock group. Deterioration maps for the Hoki I and the Furuzono Buddha Statues group show multi-directional fissures on the Cakra, and sheeting-off zone at the margin of uprising water. Deterioration rate of the Hoki I group was calculated fissure about 121 in number, 19% of sheeting-off zone and 51% of biological weathering in surface of area. And the Furuzono group was also evaluated as about 48 of fissures in number, 24% of sheeting-off zone and 41% biological weathering. The slope stability assessment results, the Hoki I developed discontinuous planes has possibility of planar, toppling and wedge failures in all caves. Ultrasonic velocity of the Aizen-myooh (basement rock) ranges from 1,520 to 2,794 (average 2,298m/s). And pedestal of Amita-yeorae which has been replaced by new fresh rock is measured as 3,242 to 4,141 (average 3,813m/s). Therefore, we establish of planing conservation treatment and reinforcement methods to fissure, cavity, sheeting-off zone in the Buddha surface.

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF

Occurrence and Chemical Composition of Minerals from the Pallancata Ag Mine, Peru (페루 Pallancata 은 광산에서 산출되는 광물들의 산상 및 화학조성)

  • Yoo, Bong Chul;Acosta, Jorge
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.87-102
    • /
    • 2019
  • Pallancata Ag mine is located at the Ayacucho region 520 km southeast of Lima. The geology of mine area consists of mainly Cenozoic volcanic-intrusive rocks, which are composed of tuff, andesitic lava, andesitic tuff, pyroclastic flow, volcano clasts, rhyolite and quartz monzonite. This mine have about 100 quartz veins in tuff filling regional faults orienting NW, NE and EW directions. The Ag grades in quartz veins are from 40 to 1,000 g/t. Quartz veins vary from 0.1 m to 25 m in thickness and extend to about 3,000 m in strike length. Quartz veins show following textures including zonation, cavity, massive, breccia, crustiform, colloform and comb textures. Wallrock alteration features including silicification, sericitization, pyritization, chloritization and argillitization are obvious. The quartz veins contain calcite, chalcedony, adularia, fluorite, rutile, zircon, apatite, Fe oxide, REE mineral, Cr oxide, Al-Si-O mineral, pyrite, sphalerite, chalcopyrite, galena, electrum, proustite-pyrargyrite, pearceite-polybasite and acanthite. The temperature and sulfur fugacity ($f_{s2}$) of the Ag mineralization estimated from the mineral assemblages and mineral compositions are ranging from 118 to $222^{\circ}C$ and from $10^{-20.8}$ to $10^{-13.2}atm$, respectively. The relatively low temperature and sulfur-oxygen fugacities in the hydrothermal fluids during the Ag mineralization in Pallancata might be due to cooling and/or boiling of Ag-bearing fluids by mixing of meteoric water in the relatively shallow hydrothermal environment. The hydrothermal condition may be corresponding to an intermediate sulfidation epithermal mineralization.

A Review on the Stratigraphy, Depositional Period, and Basin Evolution of the Bansong Group (반송층군의 층서, 퇴적시기, 분지 진화에 관한 고찰)

  • Younggi Choi;Seung-Ik Park;Taejin Choi
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.385-396
    • /
    • 2023
  • The Mesozoic Bansong Group, distributed along the NE-SW thrust fault zone of the Okcheon Fold Belt in the Danyang-Yeongwol-Jeongseon areas, contains important information on the two Mosozoic orogenic cycles in the Koran Peninsula, the Permian-Triassic Songrim Orogeny and the Jurassic Daebo Orogeny. This study aims to review previous studies on the stratigraphy, depositional period, and basin evolution of the Bansong Group and to suggest future research directions. The perspective on the implication of the Bansong Group in the context of the tectonic evolution of the Korean Peninsula is largely divided into two points of view. The traditional view assumes that it was deposited as a product of the post-collisional Songrim Orogeny and then subsequently deformed by the Daebo Orogeny. This interpretation is based on the stratigraphic, paleontologic, and structural geologic research carried out in the Danyang Coalfield area. On the other hand, recent research regards the Bansong Group as a product of syn-orogenic sedimentation during the Daebo Orogeny. This alternative view is based on the zircon U-Pb ages of pyroclastic rocks distributed in the Yeongwol area and their structural position. However, both models cannot comprehensively explain the paleontological and geochronological data derived from Bansong Group sediments. This suggests the need for a new basin evolution model integrated from multidisciplinary data obtained through sedimentology, structural geology, geochronology, petrology, and geochemistry studies.

Physical Properties of Volcanic Rocks in Jeju-Ulleung Area as Aggregates (제주도 및 울릉도에서 산출되는 화산암의 골재로서의 물성 특징)

  • Byoung-Woon You;Chul-Seoung Baek;Kye-Young Joo
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.205-217
    • /
    • 2024
  • This study evaluated the physical characteristics and quality of volcanic rocks distributed in the Jeju Island-Ulleung Island area as aggregate resources. The main rocks in the Jeju Island area include conglomerate, volcanic rock, and volcanic rock. Conglomerate is composed of yellow-red or gray heterogeneous sedimentary rock, conglomerate, and encapsulated conglomerate in a state between lavas. Volcanic rocks are classified according to their chemical composition into basalt, trachybasalt, basaltic trachytic andesite, trachytic andesite, and trachyte. By stratigraphy, from bottom to top, Seogwipo Formation, trachyte andesite, trachybasalt (I), basalt (I), trachybasalt (II), basalt (II), trachybasalt (III, IV), trachyte, trachybasalt (V, VI), basalt (III), and trachybasalt (VII, VIII). The bedrock of the Ulleung Island is composed of basalt, trachyte, trachytic basalt, and trachytic andesite, and some phonolite and tuffaceous clastic volcanic sedimentary rock. Aggregate quality evaluation factors of these rocks included soundness, resistance to abrasion, absorption rate, absolute dry density and alkali aggregate reactivity. Most volcanic rock quality results in the study area were found to satisfy aggregate quality standards, and differences in physical properties and quality were observed depending on the area. Resistance to abrasion and absolute dry density have similar distribution ranges, but Ulleung Island showed better soundness and Jeju Island showed better absorption rate. Overall, Jeju Island showed better quality as aggregate. In addition, the alkaline aggregate reactivity test results showed that harmless aggregates existed in both area, but Ulleungdo volcanic rock was found to be more advantageous than Jeju Island volcanic rock. Aggregate quality testing is typically performed simply for each gravel, but even similar rocks can vary depending on their geological origin and mineral composition. Therefore, when evaluating and analyzing aggregate resources, it will be possible to use them more efficiently if the petrological-mineralological research is performed together.