• Title/Summary/Keyword: 화기

Search Result 2,250, Processing Time 0.038 seconds

Fixed-point Implementation of LPD Decoder in MPEG-D USAC (MPEG-D USAC : LPD 복호화기의 고정 소수점 알고리즘 구현)

  • Song, Eunwoo;Song, Jeongook;Kang, Hong-Goo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.254-256
    • /
    • 2012
  • 본 논문에서는 MPEG-D 오디오 서브그룹에서 진행 중인 Unified Speech and Audio Coding (USAC) 표준의 Linear Prediction Domain (LPD) 복호화기 모듈을 고정소수점 알고리즘으로 제안한다. USAC 부호화기는 두 개의 최신 음성-오디오 부호화기가 융합된 형태로, 음성 및 오디오 신호에 대하여 우수한 성능을 갖는 부호화기이다. USAC의 표준 완료와 본격적인 서비스화에 앞서서 USAC LPD 복호화기의 구조적인 특성을 분석하고, Digital Signal Processor (DSP)구현을 위한 LPD 복호화기의 고정소수점 알고리즘을 구축하는 동시에 모듈의 복잡도를 측정하고자 한다. 또한 고정소수점 알고리즘으로 구현된 LPD 복호화기와 기존의 부동소수점 복호화기의 성능을 비교하고, LPD 복호화기의 두 가지 부호화 모드에 따른 복잡도 이슈를 다루도록 한다.

  • PDF

복호화기 예측 부호화 기술

  • Yang, Jeong-Yeop;Jeon, Byeong-U
    • Broadcasting and Media Magazine
    • /
    • v.15 no.4
    • /
    • pp.108-122
    • /
    • 2010
  • 복호화기 예측 부호화 기술은 종래의 예측 부호화 기술과 매우 다른 새로운 압축방식이다. 즉, 부호화기에서 모든 예측과정을 수행한 후, 복호화기가 예측부호화 오류로부터 원래의 데이터를 복원하는데 필요한 예측정보를 모두 전송하였던 기존 기술과는 달리, 이 예측정보를 복호화기 스스로 찾아내어 사용하는 방식이다. 이러한 이유로 압축 부호화 성능은 매우 향상 되었으나 반대로 복호화기는 예측치를 찾아내기 위하여 매우 많은 계산량을 소모하여야 한다는 단점도 있다. 본 고에서는 복호화기 예측 부호화 기술의 다양한 방식과 이러한 문제점을 어떤 방식으로 개선하였는지 알아본다.

Performance Improvement in Wavelet Transform Codec Using Statistical Characteristics of Uniform Quantizer (균일 양자화기의 통계적 특성을 이용한 웨이브릿 부호화기의 성능개선)

  • 김용규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.10B
    • /
    • pp.1375-1381
    • /
    • 2001
  • 영상 부호화 기법에 적용하여 향상된 성능을 나타내는 균일 양자화기를 제안하였다. 또한 두 가지 형태의 서로 다른 균일 양자화기에 대하여 비트율-왜곡(rate-distortion) 특성을 분석하였다. 분석결과 입력(input source)의 평균값을 기준으로, 구간값(decision level)을 이동시키는 제안한 양자화 기법이 다른 양자화기 보다 향상된 비트율-왜곡 특성을 보였다. 아울러 제안한 양자화기를 웨이브릿 변환 부호화기에 적용한 결과, 여러 가지 영상에 대하여 기존의 양자화 기법보다 우수한 결과를 얻었다.

  • PDF

A Sudy on Fluid Characteristics According to Shape of Coal Gasifier (석탄가스화기의 형상에 따른 유동특성 비교연구)

  • Ju, Ji-Sun;Jung, Woo-Hyun;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.356-359
    • /
    • 2008
  • 본 연구는 국내 고유의 가스화기 모델 개발의 목적으로 진행되었으며 다종의 가스화기 형상을 제안하고 전산해석을 이용한 비교검토를 통하여 국내 고유의 가스화기 개념설계에 활용하고자 하였다. 우선 downflow형 가스화기 3종과 upflow형 가스화기 3종에 대한 형상을 제시하고 cold flow 해석을 통한 가스화기내 유동특성과 체류시간등을 비교하였다. 또한 고유모델로의 개발에 적합한 형상을 고려하여upflow형 2종 및 downflow형 1종 등 총 3종을 선택하여 가스화 반응을 포함시킨 hot flow 해석을 진행하고 온도분포, CO 및 $H_2$의 가스농도분포를 비교하였다. 검토 결과 기존에 연구되어왔던 석탄가스기 형태인 upflow형 가스화기 하부에 산소공급노즐을 설치하는 경우 기존에 확보된 기술을 적용함을 물론 슬랙화효율을 높이는데도 잇점이 있을 것으로 판단되었다.

  • PDF

Design of High-speed H.264/AVC Parallel Decoder Using ASIP Approach (ASIP 기술을 활용한 H.264/AVC 고속 병렬 복호화기 설계)

  • Ji, Bong-Il;Sim, Dong-Gyu;Kim, Kyung-Su;Park, Seong-Mo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.251-254
    • /
    • 2009
  • 본 논문에서는 고해상도 동영상의 실시간 복호화를 위하여 Application Specific Instruction-set Processor (ASIP)기술을 이용하여 H.264/AVC 고속 병렬 복호화기를 설계하였다. 우선, 하드웨어에 최적화된 구조로 복호화기를 설계하고 LISA로 기술한 멀티미디어 전용 명령어를 명령어 집합에 추가하였다. 이렇게 설계한 고속 H.264/AVC 복호화기는 사이클 기반 시뮬레이터에서 성능을 측정한 결과 기존 대비 약 35%의 복호화 사이클 감소를 보였다. 추가적인 성능 향상을 위해, 앞서 설계한 고속복호화기를 여러 개 사용하여 병렬 H.264/AVC 복호화기를 설계하였다. 병렬 복호화기는 여러 매크로블록을 동시에 복호화 처리함으로써 복호화기의 성능을 대폭 향상시켰다. 병렬 복호화기는 고속 복호화기 대비 약 75%의 복호화 사이클이 감소하였다. 이에 고해상도 동영상의 실시간 복호화를 위한 H.264/AVC 고속 병렬 복호화기의 설계 방법을 제시하고자 한다.

  • PDF

Modeling of the gasifier section for IGCC plant (IGCC 플랜트에 적용할 가스화기부의 모델링)

  • Park, Jin-Hoo;Kim, Tae-Hyun;Go, Young-Gun;Choi, Sang-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.445-448
    • /
    • 2007
  • 석탄가스화 복합발전(IGCC)에서 석탄 가스화 기술이 전 공정의 성능에 큰 영향을 미치는 중요한 요소이다. 연료 및 산화제의 공급방식, 가스화기의 기본 구조, 벽면의 구성 방식, 용융 슬랙 및 생산되는 합성가스 배출 방식 등에 따라 가스화의 성능이 영향을 받는다. IGCC plant의 정확한 성능 해석을 위해서는 석탄가스화기 공정 모델의 정밀도를 높일 필요성이 있다. 기존의 열병합 발전 사이클 해석에서 적용되었던 열 및 물질정산과 평형계산 방식을 통하여 석탄가스화기 공정을 해석하는 방법을 확인, 정리하고 이를 개선하기 위한 절차 및 방안을 제시하고자 한다. 가스화기 내부 공정을 크게 탈휘발과 가스화의 단계로 구분하여 가스화기 출구조건을 예측하였으며, ASPEN PLUS를 이용한 공정해석을 실시하였다. 가스화기 출구에서의 합성가스는 주생성가스인 CO, $H_2$를 위주로 하여 조성을 얻을 수 있고, 그 결과들을 선행연구들과의 비교를 통하여 가스화기 모델의 분석을 실시한다. 그리고 가스화기 해석의 정밀도를 높이기 위한 향후 고려될 가스화기 모델에 관하여 논의한다.

  • PDF

Prediction of Slag Behavior in an Entrained Flow Coal Gasifier for IGCC (IGCC용 분류층 석탄가스화기 내부에서의 슬래그 거동 예측)

  • Chung, Jaehwa;Chi, Junhwa;Lee, Joongwon;Kim, Simoon;Seo, Seokbin;Park, Hoyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.75.2-75.2
    • /
    • 2011
  • 고온고압에서 운전되는 IGCC용 분류층 석탄가스화기는 석탄에 포함된 회 성분을 대부분 용융 슬래그 형태로 가스화기 벽을 타고 흘러내리게 하여 가스화기 하부로 배출시킨다. 이러한 용융 슬래그를 원활하게 배출시키는 것은 가스화기의 안정적인 운전에 있어서 매우 중요하다. 본 연구에서는 슬래그 층 내의 물질수지, 운동량 및 에너지 보존을 고려하여 석탄가스화기내의 슬래그 거동을 해석할 수 있는 모델 식을 유도하였다. 유도된 슬래그 거동 모델 식들을 적용하고 가스화기의 형상을 고려하여 가스화기 내부에서의 슬래그 거동을 해석하였다. 또한 슬래그 물성치들인 슬래그 점도, 슬래그 비열, 슬래그 밀도, 슬래그 열전달 계수 등을 슬래그의 조성 변화에 따라 별도로 산정하여 슬래그 해석의 입력 데이터로 사용하였다. 슬래그에 첨가되는 석회석의 비율을 해석의 주요 변수로 사용하여 가스화기 하부에서 용융 슬래그 및 고체 슬래그 두께, 용융 슬래그 층 내부에서의 슬래그 점도분포 및 슬래그 속도분포 등 슬래그 거동의 주요 특성들을 예측하였다. 해석결과로 석탄에 석회석의 첨가량을 증가시키면 슬래그의 임계점도온도(temperature of critical viscosity)와 점도가 낮아지므로 가스화기 벽면에서의 용융 슬래그의 유동속도는 빨라지며, 고체 슬래그와 용융 슬래그의 두께가 감소하는 것을 정량적으로 확인할 수 있었다.

  • PDF

A Prediction of Coal Ash Slagging for Entrained Flow Gasifiers (분류층 석탄가스화기 Slag 용융특성 예측)

  • Koo, Jahyung;Kim, Bongkeum;Kim, Youseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.108.1-108.1
    • /
    • 2010
  • 분류층 가스화기는 석탄과 산소(공기) 및 수증기가 반응하여 $1200{\sim}1600^{\circ}C$의 고온, 20~60기압의 고압에서 작동되어 합성가스를 생성하며 합성가스에 포함된 입자 및 황화합물 등을 정제설비를 통하여 정제 후 발전 및 화학원료로 사용한다. 석탄가스화 중 석탄에 포함된 대부분의 회분은 용융슬래그 형태로 가스화기 벽면을 따라 흘러 내려 가스화기 하부의 냉각수조에서 급랭되어 배출된다. 이때 용융슬래그의 원활한 배출을 위해서는 일정범위의 점도를 유지하는 것이 필요하다. 슬래그의 점도는 가스화기 온도 및 Ash의 조성에 따라 크게 변하며 가스화기 설계 및 운전 시 매우 중요한 변수이다. 따라서 최적의 설계 및 운전을 위해서는 Ash의 점도예측이 중요하며, 분류층 가스화기내부에서 Ash 점도 예측을 위한 DooVisco 프로그램을 개발하였다. DooVisco는 가스화기 내부에서 슬래그 용융온도 및 온도별 점도, 가스화기 최소 운전온도 및 석회석 투입 효과 분석뿐만 아니라 석탄의 혼합 사용 시의 특성 예측도 가능하도록 개발되었다. DooVisco는 슬래그 주요 4성분인 SiO2, Al2O3, CaO, FeO 성분에 대한 Phase Diagram을 이용하여 1차적으로 슬래그용융온도(Liquidus Temperature)를 예측하고, 주요 4 성분 외에 Na2O, MgO, K2O, TiO2 등을 고려한 Kalmanovich Model을 이용하여 점도를 예측한다. 최종적으로 슬래그 용융온도와 점도를 활용하여 분류층 가스화기 운전가능 온도범위를 예측한다. 개발된 DooVisco를 활용하여 300MW급 실증 IGCC 플랜트에 사용가능성이 있는 석탄을 대상으로 슬래그의 용융온도 및 점도 등을 예측하였으며 최적 운전을 위한 슬form점도 조절용 Flux인 석회석 투입량 등을 평가하였다. 평가 결과 슬래그 용융온도가 $1700^{\circ}C$ 이상으로 석회석 투입이 필요하다고 판단되었다. 약 가스화기 내부 온도를 $1500^{\circ}C$ 정도에서 원활한 운전을 위해서는 석탄 대비 약 10% 내외의 석회석 투입이 필요할 것으로 평가되었다. DooVisco는 분류층 가스화기 설 계시 가스화기 최적 운전 온도 설정 및 Flux 투입필요성, 종류, 투입량 선정에 활용될 수 있을 뿐만 아니라 플랜트 운전시 석탄의 탄종 적합성 등을 판단하는데 활용될 수 있을 것이라 판단된다.

  • PDF

Application of Coal Ash Viscosity Models for Analyzing Operation Temperatures of an Entrained Flow Gasifier (분류층 가스화기에서 운전온도 분석을 위한 석탄회 점도모델 적용)

  • Chung, Jaehwa;Lee, Joongwon;Park, Seik;Kim, Simoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.77.2-77.2
    • /
    • 2011
  • 고온고압에서 운전되는 분류층 석탄가스화기에서 석탄의 회성분을 용융슬래그로 원활하게 배출하는 것은 석탄가스화기의 안정적인 운전을 위하여 매우 중요하다. 본 연구에서는 분류층 석탄가스화기에서 원활한 슬래그의 배출조건을 파악하기 위해서 여러 슬래그 점도예측 모델들을 사용하여 가스화기의 운전온도 변화에 따른 슬래그의 점도변화를 해석하여 점도해석모델들의 적용성을 비교분석하였다. 본 연구에서 선정한 가스화기 설계탄의 회 성분을 토대로 슬래그의 점도를 계산한 결과 점도해석 모델별로 온도에 대한 점도 값이 매우 상이하게 예측되었다. 또한 설계탄에 대한 점도예측 모델들을 적용한 계산결과로부터 슬래그의 점도가 80 poise가 되는 온도인 $T_{80}$이 매우 높은 값으로 예측되었다. 따라서 가스화기의 운전온도에서 용융 슬래그를 원활하게 배출하기 위해서 설계탄에 Flux를 첨가하여 슬래그의 점도를 낮추어 줄 필요가 있음을 알았다. 기존의 점도예측 모델들 중에 점도 예측 값이 중간치 정도의 경향을 보이는 Hoy가 개발한 모델을 기준으로 가스화기의 적정 운전온도에서 Flux로 첨가할 석회석 양을 산출하였다. 본 슬래그 점도모델들의 적용 결과로부터 실제 가스화기의 운전이나 설계에 슬래그의 특성을 파악하여 운전조건 도출이나 해석에 활용하기 위해서는 운전예정인 탄종에 대한 점도측정 실험을 병행하여 적정한 점도 예측모델을 선정하는 것이 중요함을 알 수 있었다.

  • PDF

Development of G.723.1 Speech Codec Using a Fixed-point DSP(ADSP-2181) (ADSP-2181 DSP를 이용한 G.723.1 음성부호화기 개발)

  • 박정재
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.121-126
    • /
    • 1998
  • 고정 소수점 DSP 인 analog devices 사의 ADSP-2181을 이용하여 실시간 G.723.1 음성부호화기를 개발한 사례이다. G.723.1은 ITU에서 개발한 세계 표준 음성 부호화기로 낮은 전송율에서 고음질을 얻을 수 있다. 본 논문에서는 고정 소수점 DSP를 이용하여 부호화기를 갭라하는데 필요한 사항들을 제시하였다. 먼저 1절에서는 DAM성 부호화기의 특성에 대한 개괄을 설명하고, 2절에서는 G.723.1 부호화기의 특징을, 3절에서는 고정소수점 DSP를 이용하여 개발하는 과정을, 4절에서는 구현결과를 분석하였으며, 마지막으로 5절에서 결론을 맺는다.

  • PDF