• Title/Summary/Keyword: 화강암 용융

Search Result 48, Processing Time 0.025 seconds

Thermal history of the Jecheon granite pluton in the Ogcheon Fold Belt, South Korea (남한의 옥천습곡대에 분포되어 있는 제천화강암체의 열역사)

  • Jin Myung-Shik;Kim Seong-Jae;Shin Seong-Cheon;Choo Seung-Hwan;Chi Se-Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.49-57
    • /
    • 1992
  • Whole rock and mineral ages for the Jecheon Granite distributed in the Ogcheon Fold Belt were dated by three radiometric methods, and its thermal history was elucidated as follows, on the basis of isotopic age data. Rb and Sr isotopic compositions of three whole rock and seven mineral concentrates made an isochron of 202.7${\pm}$ 1.9 Ma with a strontium initial ratio of 0.7140. Different age data of twelve mineral concentrates agree closely with the retention temperature of each mineral in K-Ar and Fission Track methods. The Jecheon granitic magma was generated by partial melting of crustal materials (S-type), or by mixins between mantle and crustal materials, intruded into the katazone or mesozone (7∼9 km) of the Ogcheon Fold Belt, at least in the Early Jurassic (about 203 Ma), and then crystallized and cooled down rapidly from about 600$^{\circ}C$ to 300$^{\circ}C$ (more than 20$^{\circ}C$/Ma), owing to thermal differences between the magma and the wall-rock. During the Middle to Late Jurassic (190∼140 Ma), the cooling of the granite was likely to stop and keep thermal equilibrium with the wall-rock. The severe tectonism associated with igneous activities and active weathering on the surface in Early to Late Cretaceous time (140∼70 Ma) might have accelerated the granite pluton to uplift rapidly (40∼60 m/Ma in average) up to 3∼4 km and cooled down from 300$^{\circ}C$ to 200$^{\circ}C$ (1.4 $^{\circ}C$/Ma). The granite pluton was likely to keep different uplifting and cooling rate of about 120 m/Ma and 5$^{\circ}C$/Ma in average from the Late Cretaceous to Early Tertiary (70∼50 Ma), and about 60 m/Ma and 2$^{\circ}C$/Ma in average from about 50 Ma up to the present, respectively.

  • PDF

Cyclic Igneous Activities During the Late Paleozoic to Early Cenozoic Period Over the Korean Peninsula (고생대말-신생대초 기간에 일어난 한반도의 주기적 화성활동)

  • Park, Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.193-202
    • /
    • 2012
  • There were three cycles of igneous activities from the late Paleozoic to early Cenozoic; Permian to Triassic, Jurassic, and Cretaceous to Paleogene. After the beginning of each igneous activity cycle, igneous activity became more frequent until its climax. It is noteworthy that A-type magmatisms are reported from near the ends of the all three igneous activity cycles. In addition, adakitic magmatisms occurred at the beginning of both the Permian-Triassic and the Cretaceous-Paleogene cycles. Most of the igneous activities during the late Paleozoic to early Cenozoic period were subduction-related. Therefore, transitions among beginning, proceeding, and closing of the igneous activity cycles would be intimately related with changes in directions of plate movements. In this context, I suggest following hypotheses. The closing of the Permian-Triassic igneous cycle was possibly a consequence of radical adjustment of plate motion occurred due to continental collision between north and south China blocks. Considering that no appreciable tectonic activities were recognized from the east Asian continent at the closing of the Jurassic igneous cycle, it seems that one of the strong events related with Gondwanaland-breakup and subsequent birth of the new oceans, which might cause sudden adjustments of plate motions. The closing of the Cretaceous-Paleogene igneous cycle seems to be caused as a consequence of the collision between India and Asia continents. Meanwhile, adakitic igneous bodies emplaced at the beginnings of the Permian-Triassic and Cretaceous-Paleogene cycles could be products of slab-melting during the early stages of the subduction.

Petrology on the Late Miocene Basalts in Goseong-gun, Gangwon Province (강원도 고성군 일대의 후기 마이오세 현무암의 암석학적 연구)

  • Koh Jeong Seon;Yun Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.78-92
    • /
    • 2005
  • Petrographical and petrochemical analyses for late Miocene basalts in Goseong-gun area. Gangwon province, were carried out to interpret the characteristics and the origin of magma. The basaltic rocks occurred as plug-dome in the summit of several small mountain and developed columnar jointing with pyroxene-megacryst bearing porphyritic texture. And the basalt contains xenoliths of biotite granite (basement rocks), gabbro (lower crustal origin) and Iherzolite(upper mantle origin). The basalts belong to the alkaline basalt field in TAS diagram and partly belong to picrobasalt and trachybasalt field. On the tectonomagmatic discrimination diagram f3r basalt in the Goseong-gun area. they fall into the fields for the within plate and oceanic island basalt. The characteristics of trace elements and REEs shows that primary magma for the basalt magma would have been derived from partial melting of garnet-peridotite mantle. This late Miocene basalt volcanism is related to the hot spot within the palte.

Au-Ag-bearing Ore Mineralization at the Geochang Hydrothermal Vein Deposit (거창 열수 맥상광상의 함 금-은 광화작용)

  • Hong, Seok Jin;Lee, Sunjin;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.171-181
    • /
    • 2022
  • The Geochang Au-Ag deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz and calcite veins were formed by narrow open-space filling of parallel and subparallel fractures in the granitic gneiss and/or gneissic granite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren calcite vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of pyrite with minor pyrrhotite and arsenopyrite; middle, characterized by introduction of electrum and base-metal sulfides with minor sulfosalts; late, marked by hematite with base-metal sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥380℃ ) and later lower temperatures (≤210℃ ) from H2O-CO2-NaCl fluids with salinities between 7.0 to 0.7 equiv. wt. % NaCl of Geochang hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥380℃ to ≤210℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Geochang hydrothermal system with increasing paragenetic time. The Geochang deposit may represents a mesothermal gold-silver deposit.

Mesothermal Gold Vein Mineralization of the Seolhwa Mine: Fluid Inclusion and Sulfur Isotope Studies (설화 광산의 중열수 금광화작용: 유체포유물 및 황동위원소 연구)

  • Yun, Seong-Taek;So, Chil-Sup;Choi, Seon-Gyu;Choi, Sang-Hoon;Heo, Chul-Heo
    • Journal of the Korean earth science society
    • /
    • v.22 no.4
    • /
    • pp.278-291
    • /
    • 2001
  • Mesothermal gold vein minerals of the Seolhwa mine were deposited in a single stage of massive quartz veins which filled the mainly NE-trending fault shear zones exclusively in the granitoid of the Gyeonggi Massif. The Seolhwa mesothermal gold mineralization is spatially associated with the Jurassic granitoid of 161 Ma. The vein quartz contains three main types of fluid inclusions at 25$^{\circ}$C: 1) low-salinity (< 5 wt.% NaCl), liquid CO$_{2}$-bearing, type IV inclusion; 2) gas-rich (> 70 vol.%), aqueous type II inclusions; 3) aqueous type I inclusions (0${\sim}$15 wt.% NaCl) containing small amounts of CO$_{2}$. The H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl inclusions represent immiscible fluids trapped earlier along the solvurs curve at temperatures from 430$^{\circ}$ to 250$^{\circ}$C and pressures of 1 kbars. Detailed fluid inclusion chronologies may suggest a progressive decrease in pressure during the auriferous mineralization. The aqueous inclusion fluids represent either later fluids evelved through extensive fluid unmixing (CO$_{2}-CH$_{4}$ effervescence) from a homogeneous H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters possibly related to uplift and unloading of the mineralizing suites. The initial fluids were homogeneous containing H$_{2}$O-CO$_{2}-CH$_{4}$-N$_{2}$-NaCl components and the following properties: the initital temperature of >250$^{\circ}$ to 430$^{\circ}$C, X$_{CO}\;_{2}$ of 0.16 to 0.62, 5 to 14 mole% CH$_{4}$, 0.06 to 0.3 mole% N$_{2}$ and salinities of 0.4 to 4.9 wt.% NaCl. The T-X data for the Seolhwa gold mine may suggest that the Seolhwa auriferous hydrothermal system has been probably originated from adjacent granitic melt which facilitated the CH$_{4}$ formation and resulted in a reduced fluid state evidenced by the predominance of pyrrhotite. The dominance of negative ${\delta}\;^{34}$S values of sulfides (-0.6 to 1.4$%_o$o) are consistent with their deep igneous source.

  • PDF

Low Dilution Glass Bead Digestion Technique for the Trace Element Analysis of Rock Samples (저희석 유리구 용해법에 의한 암석시료 미량원소 분석법)

  • Park, Chan-Soo;Shin, Hyung-Seon;Oh, Hae-Young;Moon, Jong-Hwa;Cheong, Chang-Sik
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.161-172
    • /
    • 2011
  • Open beaker digestion method is routinely used as the sample preparation technique for trace element determination of rock samples by inductively coupled plasma mass spectrometry, With this method, however, dissolution of Zr and Hf is not always guaranteed especially when the samples contain refractory minerals. In this study, glass bead digestion technique was compared with conventional open beaker digestion technique for the sample preparation of three USGS rock standards such as AGV-2, BHVO-2, and G-3. Thirty trace elements including rare earth elements were analysed by ICP-MS and ICP-AES. There were no clear differences in analytical results for the AGV-2 and BHVO-2 standards between the two techniques, but Zr, Hf, Y, and middle- to heavy- rare earth element concentrations of the G-3 standard prepared by open beaker digestion technique were significantly lower than the recommended values. This can be attributed to the presence of refractory mineral zircon. On the contrary, all the analytical results of the G-3 standard prepared by glass bead digestion technique were in good agreement with the recommended values, indicating complete dissolution of zircon. The analytical results show that the volatile elements such as Pb and Zn were not lost during the preparation of glass bead. Low dilution glass bead digestion technique described here will be very helpful to enhance precision and accuracy of trace element analysis for geological samples containing refractory minerals.

Petrogenesis of Early Cretaceous Magmatism in Eastern China and the Gyeongsang Basin, Korean Peninsula (동중국과 한반도 경상분지의 백악기초기 화성활동의 성인 고찰)

  • Choi, Sung Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.51-67
    • /
    • 2016
  • Geochemical characteristics of the Early Cretaceous igneous rocks from eastern China and the Gyeongsang Basin, Korean Peninsula has been summarized. They have wide range of lithological variation with extrusive picrite-basalt-andesite-trachyte-rhyolite and lamprophyre, and intrusive gabbro-diorite-monzonite-syenite-granite and diabase in eastern China, mostly belonging to the high-K calc-alkaline or shoshonitic series. The volcanic rocks intercalated with the Hayang Group sedimentary assemblages in the Gyeongsang basin are high-K to shoshonitic basaltic trachyandesites. The Early Cretaceous basaltic rocks studied mostly fall within the field of within-plate basalts on the Zr/Y-Zr and Nb-Zr-Y tectonic discrimination diagrams. On a Sr-Nd isotope correlation diagram, basaltic rocks from the North China block (NCB) and the continent-continent collision zone (CZ) between the North and South China blocks plot into the enriched lower right quadrant along the extension of the mantle array. The initial $^{87}Sr/^{86}Sr$ ratios of basaltic rocks from the South China block (SCB) are indistinguishable from those of the NCB and CZ basaltic rocks, but their ${\varepsilon}_{Nd}$ (t) values are relatively more elevated, plotting in right side of the mantle array. Basaltic rocks from the NCB and CZ are characterized by low $^{206}Pb/^{204}Pb(t)$ ratios, lying to the left of the Geochron on the $^{207}Pb/^{204}Pb(t)$ vs. $^{206}Pb/^{204}Pb(t)$ correlation. Meanwhile, the SCB basaltic rocks have relatively radiogenic Pb isotopic compositions compared with those of the NCB and CZ basaltic rocks. Basaltic rocks from the Hayang Group plot within the field of the NCB basaltic rocks in Sr-Nd and Pb-Pb isotope spaces. Metasomatically enriched subcontinental lithospheric mantle (SCLM) is likely to have been the dominant source for the early Cretaceous magmatism. Asthenospheric upwelling under an early Cretaceous extensional tectonic setting in eastern China and the Korean Peninsula might be a heat source for melting of the enriched SCLM. Metasomatic agents proposed include partial melts of lower continental crust delaminated and foundered into the mantle or subducted Yangtze continental crust, or fluid/melt derived from the subducted paleo-Pacific plate.

Occurrence and Chemical Composition of White Mica from Zhenzigou Pb-Zn Deposit, China (중국 Zhenzigou 연-아연 광상의 백색운모 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.83-100
    • /
    • 2022
  • The Zhenzigou Pb-Zn deposit, which is one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. White mica from this deposit are occured only in layer ore and are classified four type (Type I : weak alteration (clastic dolomitic marble), Type II : strong alteration (dolomitic clastic rock), Type III : layer ore (dolomitic clastic rock), Type IV : layer ore (clastic dolomitic marble)). Type I white mica in weak alteration zone is associated with dolomite that is formed by dolomitization of hydrothermal metasomatism. Type II white mica in strong alteration zone is associated with dolomite, ankerite, quartz and alteration of K-feldspar by hydrothermal metasomatism. Type III white mica in layer ore is associated with dolomite, ankerite, calcite, quartz and alteration of K-feldspar by hydrothermal metasomatism. And type IV white mica in layer ore is associated with dolomite, quartz and alteration of K-feldspar by hydrothermal metasomatism. The structural formulars of white micas are determined to be (K0.92-0.80Na0.01-0.00Ca0.02-0.01Ba0.00Sr0.01-0.00)0.95-0.83(Al1.72-1.57Mg0.33-0.20Fe0.01-0.00Mn0.00Ti0.02-0.00Cr0.01-0.00V0.00Sb0.02-0.00Ni0.00Co0.02-0.00)1.99-1.90(Si3.40-3.29Al0.71-0.60)4.00O10(OH2.00-1.83F0.17-0.00)2.00, (K1.03-0.84Na0.03-0.00Ca0.08-0.00Ba0.00Sr0.01-0.00)1.08-0.85(Al1.85-1.65Mg0.20-0.06Fe0.10-0.03Mn0.00Ti0.05-0.00Cr0.03-0.00V0.01-0.00Sb0.02-0.00Ni0.00Co0.03-0.00)1.99-1.93(Si3.28-2.99Al1.01-0.72)4.00O10(OH1.96-1.90F0.10-0.04)2.00, (K1.06-0.90Na0.01-0.00Ca0.01-0.00Ba0.00Sr0.02-0.01)1.10-0.93(Al1.93-1.64Mg0.19-0.00Fe0.12-0.01Mn0.00Ti0.01-0.00Cr0.01-0.00V0.00Sb0.00Ni0.00Co0.05-0.01)2.01-1.94(Si3.32-2.96Al1.04-0.68)4.00O10(OH2.00-1.91F0.09-0.00)2.00 and (K0.91-0.83Na0.02-0.01Ca0.02-0.00Ba0.01-0.00Sr0.00)0.93-0.83(Al1.84-1.67Mg0.15-0.08Fe0.07-0.02Mn0.00Ti0.04-0.00Cr0.06-0.00V0.02-0.00Sb0.02-0.01Ni0.00Co0.00)2.00-1.92(Si3.27-3.16Al0.84-0.73)4.00O10(OH1.97-1.88F0.12-0.03)2.00, respectively. It indicated that white mica of from the Zhenzigou deposit has less K, Na and Ca, and more Si than theoretical dioctahedral mica. Compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution. It means that the Fe in white mica exists as Fe2+ and Fe3+, but mainly as Fe2+. Therefore, white mica from layer ore of the Zhenzigou deposit was formed in the process of remelting and re-precipitation of pre-existed minerals by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. And compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution during hydrothermal metasomatism depending on wallrock type, alteration degree and ore/gangue mineral occurrence frequency.