• Title/Summary/Keyword: 홍수유입량예측

Search Result 172, Processing Time 0.028 seconds

A Study on the Real Time Forecasting for Monthly Inflow of Daecheong Dam using Seasonal ARIMA Model (계절 ARIMA모형을 이용한 대청댐 유역 실시간 유입량 예측에 관한 연구)

  • Kim, Keun-Soon;Ahn, Jae-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1395-1399
    • /
    • 2010
  • 최근 들어 전 세계적으로 태풍과 가뭄 그리고 국지적인 호우 등의 기상변화로 인하여 수자원 종합적인 개발과 이용계획에 대한 전문적인 예측이 필요하다. 우리나라는 홍수기에 집중적인 강우 발생으로 인하여 평수기와 유입량 차이가 심한 수문특성을 가지고 있어 안정적인 수자원 공급에 대한 장기적인 관점에서 이수와 치수정책을 수립해야 한다. 본 연구는 1985년 1월부터 2008년 12월까지 24년에 해당하는 한정된 기간의 짧은 유출량 자료를 갖는 대청댐 유역에서의 시계열 유입량 특성을 Box-Jenkins모형 또는 ARIMA모형을 적용하여 추계학적 분석을 실시하였다. 월유입량과 같은 비정상성 시계열에 적용될 수 있는 적절한 추계학적 모형을 찾기 위하여 모형의 식별과 모형의 추정, 모형의 검진 등의 3단계에 걸친 분석을 실시하였다. 연구결과 대청댐 월유입량 예측모형으로 승법계절 ARIMA$(0,1,2){\times}(1,1,0)_{12}$이 유도되었으며, 이 모형으로 1, 3, 6, 12개월의 선행기간에 대한 실시간 유입량을 예측하였다. 예측된 유입량을 2008년 실측유입량과 비교한 결과 6개월에 대한 예측의 정확성이 가장 높게 나타났다. 또한 평수기와 홍수기를 구분한 예측도 실시하였으며, 평수기는 1개월 홍수기는 3개월 간격으로 예측하는 것이 가장 적절한 것으로 분석되었다.

  • PDF

Flood Estimation for Hydropower Reservoir Operation in North Han River (홍수기 북한강 발전용댐 운영을 위한 유입량 예측)

  • Ji, Jungwon;Lee, Eunkyung;Yi, Jaeeung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.31-31
    • /
    • 2017
  • 북한강은 한강의 제 1 지류로 지리적 이점과 풍부한 유량으로 많은 댐들이 건설 되었다. 북한강 본류에는 6개의 크고 작은 댐이 있는데 이들 중 4개가 홍수조절 능력이 없는 발전용댐이다. 이 댐들은 발전효율 향상과 범람으로 인한 저수지 붕괴에 대비하기 위하여 수위를 일정하게 유지하는 방식으로 운영되고 있다. 그러나 최근에 발생하는 집중호우와 게릴라성 폭우는 이러한 목표를 달성하기 힘들게 하고 있다. 지금까지 댐 운영을 위한 유입량 예측에 관련된 연구는 많이 있었지만 대부분 예측 단위가 1시간 이상이었다. 본 연구의 대상이 된 북한강 발전용댐은 저수용량이 작아 적은 양의 유입에도 수위가 급변하는 특징이 있기 때문에 1시간 단위로 유입량을 예측하는 모형은 실제 운영에 적용하기 어렵다. 본 연구에서는 댐의 운영자가 수문 개도 의사결정에 참고할 수 있는 유입량 자료를 생성하기 위하여 10분 단위 유입량을 예측하였다. 또한 댐들이 직렬로 배치된 유역의 특징을 고려하여 상류에 댐이 있는 경우에는 상류 댐의 방류량을 고려하였다. 본 연구는 뉴로 퍼지 기법을 사용하였으며 2004~2016년까지 발생한 호우 사상을 이용하여 모형을 구성하고 검증하였다.

  • PDF

Dam Inflow Prediction and Evaluation Using Hybrid Auto-sklearn Ensemble Model (하이브리드 Auto-sklearn 앙상블 모델을 이용한 댐 유입량 예측 및 평가)

  • Lee, Seoro;Bae, Joo Hyun;Lee, Gwanjae;Yang, Dongseok;Hong, Jiyeong;Kim, Jonggun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.307-307
    • /
    • 2022
  • 최근 기후변화와 댐 상류 토지이용 변화 등과 같은 다양한 원인에 의해 댐 유입량의 변동성이 증가하면서 댐 관리 및 운영조작 의사 결정에 어려움이 발생하고 있다. 따라서 이러한 댐 유입량의 변동 특성을 반영하여 댐 유입량을 정확하고 효율적으로 예측할 수 있는 방안이 필요한 실정이다. 머신러닝 기술이 발전하면서 Auto-ML(Automated Machine Learning)이 다양한 분야에서 활용되고 있다. Auto-ML은 데이터 전처리, 최적 알고리즘 선택, 하이퍼파라미터 튜닝, 모델 학습 및 평가 등의 모든 과정을 자동화하는 기술이다. 그러나 아직까지 수문 분야에서 댐 유입량을 예측하기 위한 모델을 개발하는데 있어서 Auto-ML을 활용한 사례는 부족하고, 특히 댐 유입량의 예측 정확성을 확보하기 위해 High-inflow and low-inflow 의 변동 특성을 고려한 하이브리드 결합 방식을 통해 Auto-ML 기반 앙상블 모델을 개발하고 평가한 연구는 없다. 본 연구에서는 Auto-ML의 패키지 중 Auto-sklearn을 통해 홍수기, 비홍수기 유입량 변동 특성을 반영한 하이브리드 앙상블 댐 유입량 예측 모델을 개발하였다. 소양강댐을 대상으로 적용한 결과, 하이브리드 Auto-sklearn 앙상블 모델의 댐 유입량 예측 성능은 R2 0.868, RMSE 66.23 m3/s, MAE 16.45 m3/s로 단일 Auto-sklearn을 통해 구축 된 앙상블 모델보다 전반적으로 우수한 것으로 나타났다. 특히 FDC (Flow Duration Curve)의 저수기, 갈수기 구간에서 두 모델의 유입량 예측 경향은 큰 차이를 보였으며, 하이브리드 Auto-sklearn 모델의 예측 값이 관측 값과 더욱 유사한 것으로 나타났다. 이는 홍수기, 비홍수기 구간에 대한 앙상블 모델이 독립적으로 구축되는 과정에서 각 모델에 대한 하이퍼파라미터가 최적화되었기 때문이라 판단된다. 향후 본 연구의 방법론은 보다 정확한 댐 유입량 예측 자료를 생성하기 위한 방안 수립뿐만 아니라 다양한 분야의 불균형한 데이터셋을 이용한 앙상블 모델을 구축하는데도 유용하게 활용될 수 있을 것으로 사료된다.

  • PDF

Dam Inflow Forecasting for Short Term Flood Based on Neural Networks in Nakdong River Basin (신경망을 이용한 낙동강 유역 홍수기 댐유입량 예측)

  • Yoon, Kang-Hoon;Seo, Bong-Cheol;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.1
    • /
    • pp.67-75
    • /
    • 2004
  • In this study, real-time forecasting model(Neural Dam Inflow Forecasting Model; NDIFM) based on neural network to predict the dam inflow which is occurred by flood runoff is developed and applied to check its availability for the operation of multi-purpose reservoir Developed model Is applied to predict the flood Inflow on dam Nam-Gang in Nak-dong river basin where the rate of flood control dependent on reservoir operation is high. The input data for this model are average rainfall data composed of mean areal rainfall of upstream basin from dam location, observed inflow data, and predicted inflow data. As a result of the simulation for flood inflow forecasting, it is found that NDIFM-I is the best predictive model for real-time operation. In addition, the results of forecasting used on NDIFM-II and NDIFM-III are not bad and these models showed wide range of applicability for real-time forecasting. Consequently, if the quality of observed hydrological data is improved, it is expected that the neural network model which is black-box model can be utilized for real-time flood forecasting rather than conceptual models of which physical parameter is complex.

Development and Evaluation of Module for Agricultural Reservoir Flood Simulation (저수지 홍수분석 모듈 개발 및 평가)

  • Lee, Jaenam;Shin, Hyungjin;Lee, Jaeju;Kang, Munsung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.382-382
    • /
    • 2019
  • 홍수시 홍수관리체계는 기상청 등 관련기관으로부터 수위, 강우 등 수문자료를 취득하고, 저수지의 실시간 저수지 수위자료와 강우예측정보를 이용하여 홍수 유입량 및 방류량을 계산하고 홍수 단계별로 홍수분석을 실시한 후 조기에 상황을 전파하고 선제적으로 대응할 수 있는 운영체계가 필요하다. 본 연구에서는 기상청 레이다 및 위성자료 기반의 실시간 강우예측 자료를 적용한 저수지 홍수예측 및 하류부 침수 안전성 분석에 활용하기 위한 저수지 홍수분석 모듈을 개발하였다. 홍수량 산정은 Clark 방법과 NRCS 단위도법을 적용하고, 하류하천 수리해석을 위해 미환경청의 SWMM EXTRAN 블록을 수리해석 모형을 적용하였다. 홍수 실시간분석은 기상청 발표 예측 강우량을 이용하여 유역의 유출량을 분석하고 저수지 유입량을 산정할 수 있도록 하였으며, 이때 유입량에 의하여 저수지 홍수관리 수위를 상회하게 되면 여수토를 통하여 하류 하천으로 방류하도록 설계하였다. 방류된 홍수량은 하천을 따라 홍수추적을 수행하고 하천의 주요 지점에서 하천기본계획에서 수립된 홍수위의 상회 여부를 판단하여 관리자가 침수여부를 판단할 수 있도록 모듈을 개발하였다. 개발모듈의 검증을 위해 ${{\bigcirc}{\bigcirc}}$용수구역에 적용하여 백곡지구 농업용저수지 둑 높이기사업 기본계획(2011)에서 산정한 가능최대강수량에 대한 6시간, 12시간, 18시간, 24시간 홍수량을 HEC-HMS, HEC-1 모형으로 산정한 결과 비교하였다. 본 모듈은 농촌지역 홍수관리체계를 구축하는데 활용될 것으로 기대된다.

  • PDF

Flood Inflow Forecasting on Multipurpose Reservoir by Neural Network (신경망리론에 의한 다목적 저수지의 홍수유입량 예측)

  • Sim, Sun-Bo;Kim, Man-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.45-57
    • /
    • 1998
  • The purpose of this paper is to develop a neural network model in order to forecast flood inflow into the reservoir that has the nature of uncertainty and nonlinearity. The model has the features of multi-layered structure and parallel multi-connections. To develop the model. backpropagation learning algorithm was used with the Momentum and Levenberg-Marquardt techniques. The former technique uses gradient descent method and the later uses gradient descent and Gauss-Newton method respectively to solve the problems of local minima and for the speed of convergency. Used data for learning are continuous fixed real values of input as well as output to emulate the real physical aspects. after learning process. a reservoir inflows forecasting model at flood period was constructed. The data for learning were used to calibrate the developed model and the results were very satisfactory. applicability of the model to the Chungju Mlultipurpose Reservoir proved the availability of the developed model.

  • PDF

The Study of Hydraulic Channel Routing Model Considering Tide Influence on the Downstream of the Nakdong River (조위를 고려한 낙동강 하류부 수리학적 홍수추적 모형의 연구)

  • Lee, Eul-Rae;Kim, Jong-Rae;Shin, Cheol-Kyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1006-1010
    • /
    • 2005
  • 본 연구는 1차원 부정류 해석모형인 FLDWAV 모형을 이용하여 댐방류 또는 상류지점의 지류유입유량과 하류단의 조위에 따른 영향이 낙동강 하류 홍수위에 미치는 영향을 해석하고, 이를 GUI 시스템과의 연계를 통한 효율적인 홍수관리시스템을 구축하는데 있다. 또한 수리학적 모형수행을 위한 입력자료가 될 수 있는 수문학적 모형과의 연계방법을 제시하였으며 예측조위와 하구둑 방류량을 고려한 합리적인 하류경계조건을 지정하기 위해 회귀방정식에 의한 하류부 예측조위산정방법을 제시하였다. 본 연구에서는 적포교 수위관측소를 기점으로 하여 낙동강 하구둑까지 110km를 대상구간으로 설정하였다. 상류경계조건으로는 적포교지점의 유입량과 남강, 밀양강, 양산천 등의 지류유입량 등을 현재 한국수자원공사에서 적용하고 있는 KOWACO 홍수분석모형에 의해서 산정하였다. 또한 하류경계조건은 하구둑 내수위의 실측자료를 이용하였으며 향후 예측을 위한 적용성을 위해서 하구둑의 유입량과 예측조위조건의 상관성을 이용하여 회귀식을 산정하였다. 또한 해석결과의 효율적인 도시를 위해서 홍수추적 모형과 연계한 GUI 시스템을 구축하였다. 과거 발생한 홍수사상에 대해서 적용한 결과 실측치와 관측치가 유사한 수위 거동을 나타내고 있었다. 본 연구의 결과를 이용하여 다른 수계에서도 홍수예경보시스템의 구축을 위한 수리학적 모형과 수문학적 모형의 연계를 통한 좀더 신뢰성있고 정확한 해석결과를 제시할 수 있을것으로 판단된다.

  • PDF

Prediction of Reservoir-Inflow using LSTM (LSTM을 이용한 댐 유입량 예측 평가)

  • Mok, Ji-Yoon;Hwang, Sung-hwan;Choi, Ji-Hyeok;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.319-319
    • /
    • 2019
  • 기후변화로 인한 극한 기후 상황의 증가로 홍수기 홍수피해와 갈수기 가뭄피해가 심화되고 있으며, 수자원 관리에 대한 어려움이 발생하고 있다. 효율적인 수자원 관리를 위해 국내에는 약 1,8000여개의 댐을 운영하고 있으며, 댐의 유입량과 저수량을 감안하여 물을 적절하게 방류하는 것을 목적으로 한다. 그러기 위해서는 유입량이 우선적으로 확보되어야 하며, 더 나아가 유입량을 미리 예측할 수 있다면 더욱 효율적인 댐 운영이 가능할 것이다. 기존에는 수위나 유량을 예측하기 위해서는 주로 물리적 모형이 사용되어 왔으며, 물리적 모형은 매개변수 결정을 위한 많은 자료를 필요로 하고 그 과정에서 많은 불확실성을 포함하고 있기 때문에 계산 과정을 거치는 동안 다양한 오차가 반복 누적되는 단점이 있다. 반면에 시계열 데이터 예측을 위한 알고리즘 LSTM(Long Short-Term Memory)은 입력된 데이터와 출력된 데이터를 동시에 이용하여 보다 정확한 예측 값을 얻을 수 있다. 따라서 본 연구는 다목적댐의 유입유량 예측을 위해 구글에서 제공하는 딥러닝 오픈소스 라이브러리를 활용하여 LSTM모형을 구축하고 댐 유입유량을 예측하였다. 분석 자료로는 wamis에서 제공하는 용담댐의 2006년부터 2018년까지의 시간당 유입량 자료를 사용하였으며, 입력 데이터로 모형을 학습한 후 2018년의 유입량을 예측하였다. 예측 값의 정확도를 판단하기 위해 2018년의 실제 유입량 자료와 비교하였다.

  • PDF

Development of dam inflow forecasting method using VARX model (VARX 모델을 이용한 댐 유입량 전망기법 개발)

  • Kwon, Yoon Jeong;Kim, Jinyoung;Yu, Jaeung;Kang, Subin;Kwon, Hyun-han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.406-406
    • /
    • 2022
  • 댐은 물을 담아두어 강수량에 따른 유량을 조절하거나, 하천의 물을 끌어와 사용할 수 있게 하는 역할 또는 모래, 자갈 등을 막아 걸러주는 역할 등을 수행한다. 우리나라의 경우 지역별, 계절별 강수량의 차이가 크며, 그로 인해 유량이 지역과 계절에 영향을 크게 받는다. 이런 변동성을 조절하기 위해 치수와 이수, 두 분야 모두에서 댐의 중요성이 크다. 이뿐만 아니라 기후변화로 인한 변동성의 극대화로 인해 그 중요성이 나날이 커지고 있다. 댐을 운영하기 위해서는 강수량에 따른 댐 유입량의 예측을 하여, 적절한 방류 시기 및 방류량을 결정하는 것이 가장 중요한 요소이다. 기후변화로 인한 변동성의 증대로 홍수와 가뭄과 같은 재해의 빈도와 심도가 커지면서 댐 유입량의 예측이 어려워지고 있다. 댐의 설계나 유지관리를 위해 홍수에 대해서는 많은 연구가 이루어졌던 것에 비해, 갈수기의 경우 물 부족으로 인해 유량이 적어져 댐 유입량에 대한 정확한 산정이 어려워 가뭄 시 댐 유입량에 관한 연구가 홍수 시에 비해 적게 연구된 것이 실정이다. 따라서 가뭄 시 댐 연구를 위해 갈수기의 댐 유입량에 대한 정확한 산정 및 예측의 필요성이 대두되고 있다. 이번 연구에서는 댐 주변의 지하수위와 하천수위의 관계성을 보이고 각각 다른 변량 간의 시간적 종속성을 고려하는 동시에 상호연관된 변량의 시간적 종속성을 동시에 고려한VARX(vector autoregressive-exogenous) 모델을 이용하여 정확한 댐의 유입량을 산정 및 예측하고 그에 대한 검증을 시행하여, 댐 분야에서 가뭄에 대비할 수 있는 근간을 마련하였다.

  • PDF

Improvement of flood-stage forecast using the HPG in the lower Nakdong River (HPG를 이용한 낙동강 하류구간 홍수위 예측 정확도 개선)

  • Kim, Ji-Sung;Kim, Won;Choi, Kyu Hyun;Kim, Keuk Soo;Kim, Tae-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.242-242
    • /
    • 2016
  • 낙동강 하류구간인 남강합류점에서 낙동강하구둑까지는 하상경사가 약 1/10,000보다 작은 매우 완만한 경사를 이루고 있으므로 홍수기 고수위를 장시간 유지하는 등 홍수소통에 불리한 조건을 가지고 있다. 이처럼 하상경사가 매우 완만한 하천에서는 홍수파의 전파 특성이 하상경사, 수심경사, 그리고 이송가속도와 국부가속도 경사 등 운동량 방정식의 각 항 모두에 영향을 크게 받는 것으로 알려져 있다. 따라서, 낙동강 하류구간의 홍수분석 정확도 개선을 위해서는 대상구간에 유입하는 홍수수문량의 크기 및 변화를 정확히 반영하는 것이 무엇보다 중요하다. 하천 본류로 유입하는 지류의 홍수량을 산정하는 보편적인 방법은 지류 하류의 수위관측소에서 구축된 수위-유량관계곡선을 이용하는 것이다. 그러나 본류 수위의 배수영향을 받는 지류 하류 구간에서는 단일 수위-유량관계의 결정이 불가능하므로 지류 유출량 산정을 위한 새로운 방법이 필요하다. 본 연구에서는 낙동강 하류구간(창녕 함안보~낙동강하구둑) 유역면적의 약 45% 이상을 차지하는 밀양강 유역의 홍수기 유출량 산정을 위하여 HPG(Hydraulic Performance Graph)를 이용하였다. HPG는 배수영향을 받아 시시각각 수리특성이 변화하는 구간에서도 유량 및 상하류 수위 등 수리특성 추정에 합리적인 결과를 제공하는 것으로 알려져 있다. 2012년 태풍 산바 사상을 대상으로 HPG를 이용하여 산정한 밀양강 홍수량과 기존 수위-유량관계로 산정한 홍수량을 각각 경계조건으로 사용한 경우로 구분하여, 낙동강 하류구간 주요 지점인 삼랑진과 구포의 홍수위 예측 정확도를 비교하였다. 비교결과, 기존 방법과 HPG를 이용한 방법 모두 예측시점이 첨두발생 시각에 가까워질수록 평균오차가 감소하는 것으로 분석되었다. 그러나 기존 방법은 예측시점에 따라 평균오차의 변화가 단조롭지 않고 진동이 발생한 반면, HPG를 이용한 방법은 기존 방법보다 오차의 감소가 단조롭고 지속적인 것으로 나타났으며 평균오차 또한 작았다. 본 연구결과, 배수영향을 받는 지류 하류구간에서 HPG를 이용한 유입량 산정은 본류 홍수위 예측 정확도 개선을 위한 경제적인 대안이 될 것으로 판단된다.

  • PDF