Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.642-642
/
2012
최근에 들어 지구온난화에 따른 기후변화의 영향으로 국지성 집중호우와 돌발성 호우가 한반도 뿐 아니라 전 세계적으로도 많이 나타나고 있고, 그로 인한 이상홍수의 발생이 우리나라의 인명 및 재산피해를 날로 증가시키고 있는 추세이다. 그러나 현재 국내의 홍수방어시스템은 정확도 및 선행시간 확보 등의 측면에서 국민들의 요구수준까지는 그 역할을 수행하지 못하고 있는 실정이다. 또한 최근 4대강 살리기 사업을 통해 수행된 보 설치 및 하도 준설로 인해 하천환경의 변화가 크게 발생하여, 보다 정확하고 신속한 홍수위 예측기법이 요구되고 있는 실정이다. 이에 따라 현재 4대강 홍수통제소에서는 정확한 홍수위예측을 위해 4대강 본류 및 주요 지류에 대해 수리모형을 구축하고 있고, 기존의 저류함수모형에 의한 강우-유출 해석기법을 적용하여 주요 지류에 대한 유입량을 산정하기 위한 모형을 구축중에 있다. 국내 홍수방어 시스템에 현재까지 사용되어 오고 있는 저류함수모형 및 수위-유량 관계식을 이용한 방법은 물리적 기반의 홍수예측모형으로 유역의 지형학적 인자와 그에 따른 여러 변수를 포함하기 때문에 하천환경의 변화로 인해 각각의 추적과정에서 오차들이 발생하여 해석결과에 영향을 미치는 단점이 있다. 이에 반해 데이터 기반 모형은 강우-유출 모형에서 사용되는 많은 수문학적 자료 및 매개변수들의 사용 없이 오직 수위 및 강우측정 자료만을 이용하여 홍수를 예측하는 모형이다. 본 연구에서는 낙동강 유역에 대해 보다 정확한 홍수위 예측을 위해 현재 낙동강홍수통제소에서 구축중인 낙동강 본류의 수리모형의 주요 지류의 유입량 산정을 위해 기존의 물리적 기반 모형이 아닌 뉴로-퍼지(Neuro-Fuzzy) 모형을 이용한 data 기반 모형을 적용해 기존 물리적 기반 모형과 비교 분석 하고자 하였다. 낙동강의 주요지류인 감천, 금호강, 남강, 내성천, 밀양강, 반변천, 위천, 황강을 적용유역으로 선정하여 유역별로 티센망을 구축하였고, 각 지류별로 수위관측소를 선정하여 최근 10년동안 낙동강유역의 홍수예 경보가 발령되었거나 많은 비가 온 사상을 선정해 모형을 검증하였다. 모형은 실시간 수위측정 자료와 강우자료 및 해당유역 댐의 방류량 자료를 이용해 유역별 최적 입력자료 조합을 선정하여 간단하게 구축할 수 있었다. 또한 10분 단위 및 30분 단위의 입출력 자료로 모형을 구축하여 비교하였다. 이번 연구에서 수행한 낙동강유역에서의 뉴로-퍼지(Neuro-Fuzzy) 모형을 이용한 홍수예측기법을 통해 몇가지 data만으로 유역의 주요지점에 대한 홍수위와 홍수량을 예측할 수 있음을 확인할 수 있었다. 모의 결과는 실측치와 비교해 정확도 면에서 우수함을 보여 주었으나 예측시간이 길어질수록 실측치의 경향을 벗어나는 결과를 보였다. 그러나 실시간 홍수예 경보에 있어서는 만족할만한 선행시간을 확보할 수 있었다. 구축된 Data 기반 모형이 물리적 기반 모형과 더불어 낙동강 홍수예 경보를 위한 모형으로 사용될 수 있다면 보다 효율적인 예 경보 체계 구축에 도움을 줄 수 있을 것으로 판단된다.
To efficiently carry out the flood management of a multipurpose dam, two flood forecasting models are developed, each of which has the capabilities of forecasting upstream inflows and flood discharges downstream of a dam, respectively. The models are calibrated, validated, and evaluated by comparison of the observed and the runoff forecasts upstream and downstream of Namgang Dam. The upstream inflow forecasting model is based on the Grey system theory and employs the sixth order differential equation. By comparing the inflows forecasted by the models calibrated using different data sets with the observed in validation, the most appropriate model is determined. To forecast flood discharges downstream of a dam, a Grey model is integrated with a modified Muskingum flow routing model. A comparison of the observed and the forecasted values in validation reveals that the model can provide good forecasts for the dam's flood management. The applications of the two models to forecasting floods in real situations show that they provide reasonable results. In addition, it is revealed that to enhance the prediction accuracy, the models are necessary to be calibrated and applied considering runoff stages; the rising, peak, and falling stages.
The model using time series data can be considered as a flood forecasting model of a small river due to its efficiency for model development and the advantage of rapid simulation for securing predicted time when reliable data are obtained. Transfer Function Noise (TFN) model has been applied hourly flood forecast in Italy, and UK since 1970s, while it has mainly been used for long-term simulations in daily or monthly basis in Korea. Recently, accumulating hydrological data with good quality have made it possible to simulate hourly flood prediction. The purpose of this study is to assess the TFN model applicability that can reflect exogenous variables by combining dynamic system and error term to reduce prediction error for tributary rivers. TFN model with hourly data had better results than result from Storage Function Model (SFM), according to the flood events. And it is expected to expand to similar sized streams in the future.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.333-333
/
2021
최근 전 지구적인 기후변화 및 온난화의 영향으로 태풍 및 집중호우가 빈번하게 일어나고 있으며, 이로 인한 한천범람 등 홍수재해로 인명 및 재산 피해가 크게 증가하고 있다. 우리나라에서도 태풍 및 집중호우로 인한 호수피해는 매년 발생하고 있으며, 피해 빈도와 강도가 증가하고 있는 실정이다. 이러한 현실을 고려하였을 때에 하천 인근 주민의 생명과 재산을 보호하기 위하여 실시간으로 홍수위 예측을 수행하는 것은 매우 중요하다 할 수 있다. 국내에서 수위예측을 위하여 대표적으로 저류함수모형(Storage Function Model, SFM)을 채택하고 있지만, 유역면적이 작아 홍수 도달시간이 짧은 중소하천에서는 충분한 선행시간과 정확도를 확보하기 어려운 문제점이 있다. 이는 유역면적이 작은 중소하천에서는 유역 및 기상 특성과 관련된 여러 인자 사이의 비선형성이 대하천 유역에 비해 커지는 문제점이 있기 때문이다. 본 연구에서는 위와같은 문제를 해결할 수 있도록, 수문자료와 딥러닝 기법을 적용하여 실시간으로 홍수위를 예측할 수 있는 방법론을 제시하였다. 지난 태풍 및 집중호우로 인하여 급격한 수위상승이 있던 낙동강 지류하천에 대하여 LSTM(Long-Short Term Memory) 모형 기반 실시간 수위예측 모형을 개발하였으며, 선행시간 30~180분 별로 홍수위를 예측하고 관측 수위와 비교함으로써 모형의 적용성을 검증하였다. 선행시간 180분 기준으로 영강 유역 수위예측 결과와 실제 관측치의 평균제곱근 오차는 0.29m, 상관계수는 0.92로 나타났으며, 밀양강 유역의 경우 각각 0.30m, 0.94로 나타났다. 본 연구에서 제시된 딥러닝 기반모형에 10분 단위 실시간 수문자료가 입력된다면, 다음 관측자료가 입력되기 전 홍수예측 결과가 산출되므로 실질적인 홍수예경보체계에 유용하게 사용될 수 있을 것이라 보인다. 모형에 적용할 수 있는 더욱 다양한 수문자료와 매개변수 조정을 통하여 예측결과에 대한 신뢰성을 더욱 높일 수 있다면, 기존의 저류함수모형과 연계하여 홍수대응 능력을 향상시키는데 도움이 될 수 있다.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.1161-1165
/
2006
본 연구는 OLS 및 변수선택법에 의해 통계학적 모형의 매개변수를 산정하여 모형의 적용성을 입증하고 하천 주요지점에 대한 홍수위 예측을 통해 홍수예보 및 예측 업무에 기여코자하는데 연구목적이 있다. 다중선형회귀모형을 구성하기 위한 독립변수는 예보지점의 수위/유출량 자료와 상류지점의 수위/유출량 자료, 그리고 유역의 선행 평균강우량 등의 자료를 독립변수로 하여 통계학적 홍수예측을 위한 다중선형 회귀모형을 각각 구성하여 적합성 여부를 판단하였다. 매개변수 산정은 OLS(Ordinary least square root method)와 변수선택(Stepwise)방법에 의해 산정하였으며, 중랑천 유역의 2002년부터 2005년까지의 수문사상 16개를 선정하여 모형에 적용한 결과 두 매개변수 산정방법 모두 30분에서 90분 예측은 상대적으로 정확한 결과를 나타내었으며, OLS 및 변수선택법에 의한 매개변수 산정결과 변수선택법에 의한 방법이 OLS 방법보다는 상관성이나 효율지수면에서 조금 더 정확한 값을 나타내고 있으나 독립변수의 일관성을 감안한다면 변수선택법보다는 OLS방법에 의한 매개변수 산정이 타당할 것으로 사료된다. 기존의 홍수예보 업무에 활용되고 있는 수문학적 홍수예측 모형인 저류함수법의 여러 매개변수 조정에 의한 홍수위 예측 방법보다는 비교적 간단한 통계적 방법에 의한 홍수위 예측 방법으로 홍수예보의 선행시간 확보가 필수적인 중랑천과 같이 유역면적이 작은 중소하천에서의 홍수예보 업무에 효과적으로 이용 가능할 것으로 사료된다.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.415-415
/
2023
홍수는 일반적으로 많은 피해와 인명 손실을 초래하는 자연재해 중 하나로, 홍수위 예측은 이를 방지하고 대처하는 데 중요한 역할을 한다. 최근 기계학습 기술을 이용하여 홍수위 예측 모델을 개발하고자 하는 연구가 많이 진행되고 있다. 특히, LSTM(long short-term memory) 모형은 시계열 예측에 대해 검증된 모형으로 홍수위 예측 연구에도 활발하게 적용되고 있다. 하지만 기계학습 모델의 학습 성능은 하이퍼파라미터의 값에 영향을 크게 받을 수 있으며, 특히 집중호우로 인해 수위가 급변하는 경우에는 과거 시계열 자료에 영향을 받는 LSTM 모형의 예측 성능이 오히려 낮게 나타날 수 있다. 따라서 본 연구에서는 홍수위 예측시 LSTM 모형의 예측 성능을 향상시킬 수 있는 세부 하이퍼파라미터 값을 분석하여 최적의 하이퍼파라미터 조합을 제안하고자 한다. 이를 위해 하이퍼파라미터 조정을 위한 자동화 도구인 W&B(Weights&Bias)의 Sweep 기능을 적용하고자 한다. 본 연구를 통해 LSTM 모형을 적용한 홍수위 예측의 정확도를 향상시키는 데에 기여할 수 있을 것으로 기대된다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.394-394
/
2020
최근 빈번히 발생하고 있는 슈퍼 태풍과 집중호우로 인해 크고 작은 침수피해가 발생하고 있다. 우리나라는 4대강 사업을 통해 주요 국가하천에 대한 정비를 마친 바 있으나 이후 지속적으로 변화하는 하천 환경에 대한 홍수예측 모형의 반영은 미비한 실정이었다. 따라서 본 연구에서는 낙동강 본류 및 지류의 최신 단면자료를 수집하여 수리학적 홍수예측모형에 반영하고자 하였다. 또한, 기존의 모형에 비해 정확도를 개선할 수 있는 방안을 모색하여 적용성을 검증하고 이를 반영한 수리학적 홍수예측 모형을 제시하고자 한다. 본 연구에서는 낙동강 본류 및 주요 지류에 대한 최신 횡단면 측량자료를 활용하여 1차원 수리학적 홍수예측 모형을 구축하고 2012년 태풍 산바 사상에 대한 검보정을 실시하였다. 대상구간은 안동조정지댐으로부터 낙동강 하구둑 하류 8km지점이며, 상류단 경계조건은 안동조정지댐 방류량을 입력하고 하류단 경계조건은 가덕도 조위관측소의 조위를 활용하였다. 또한, 반변천, 내성천, 위천, 감천, 금호강, 황강, 남강 등 7개 지류에 대한 하도를 하도추적이 가능한 네트워크 모형으로 구축함으로써 지류에 대한 홍수예보에 활용할 수 있도록 하였다. 낙동강 본류의 하도 길이는 340km, 824개의 단면으로 구성하였으며, 지류를 포함한 전체 하도 길이는 572km, 1,570개의 단면으로 구성하였다. 또한, 낙동강 본류에 위치한 8개의 다기능보와 지류에 위치한 횡단구조물의 반영을 위해 다기능보의 제원 및 하천기본계획을 참고하여 내부경계조건으로 활용하였다. 본 연구에서 구축된 낙동강 본류 및 지류의 수리학적 홍수예측 모형을 낙동강 유역에 대한 홍수주의보 및 홍수경보 등 홍수특보 발령 업무에 활용함으로써 정확한 홍수예보가 가능하도록 하였다.
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.262-262
/
2011
최근 들어 지구환경 변화에 따른 이상기후의 영향으로 태풍 및 집중호우로 인한 하천범람 등 홍수재해에 의한 인명과 재산의 피해가 급증하고 있다. 특히 한반도 지역에서는 집중호우와 태풍과 같은 이상강우로 인한 홍수피해의 발생이 매년 나타나고 있으며 홍수피해의 빈도와 강도는 증가하고 있는 실정이다. 이러한 상황에서 극심한 기상이변으로 인하여 발생되는 이상홍수의 예측에 관한 사항은 치수 이수는 물론 친수관점에서 볼 때 하천관리의 측면에서 매우 중요한 관심사로 부각되고 있다. 특히 홍수예측은 주민의 대피 및 통제, 시설물의 보호 등을 위해 충분한 선행시간을 확보할 수 있는 실시간적 관점에서의 홍수예측 및 관리가 중요하다. 기존의 수문학적 강우-유출 모형은 비선형성이 강하고 유역의 지형학적 인자와 기후학적 인자의 영향을 포함하기 때문에 정확한 예측이 어렵고 유출량을 계산하기 위한 유역추적, 저수지추적 및 하도추적의 각 추적과정에서 크고 작은 오차들이 발생하고 그것들이 누적되어 유출 모형의 해석 결과에는 많은 오차들이 포함되어 있다는 문제점이 있다. 또한 주로 유역 면적이 크고 홍수의 도달시간이 긴 대하천의 홍수예측에는 기존의 강우-유출 모형이 적당한 방법임에도 불구하고 유역면적이 작은 중소하천에 적용됨으로써 많은 불확실성을 포함하고 있으며 충분한 선행시간을 확보하지 못하는 문제점을 가지고 있다. 따라서 본 연구에서는 중소하천에서의 기존의 홍수예경보가 가지고 있는 문제점을 해결하기 위해 실시간 수위측정 자료 및 강우자료를 이용한 간단한 입력자료 만으로도 홍수예측이 가능한 뉴로-퍼지(Neuro-Fuzzy) 모형을 구축하여 충분한 선행시간을 확보함으로써 중소하천에서 의 실시간 홍수예측이 가능한 시스템을 구성하여 실시간으로 구동되는 효율적인 홍수예경보 시스템을 개발하고자 하였다. 임진강 유역을 대상으로 기존의 강우-유출 모형이 요구하는 유역의 물리적, 지형 자료 및 매개변수와 같은 광범위한 양의 자료를 배제하고, 유역의 강우 자료와 수위자료만으로 유역의 중요지점에 대한 홍수위 및 홍수량을 예측할 수 있는 뉴로-퍼지 모형을 구축하고 대상 유역에 적용하여 실측치와 비교 검증하였다.
The objective of this study is to develop the data driven model for the flood forecasting that are improved the problems of the existing hydrological model for flood forecasting in medium and small streams. Neuro-Fuzzy flood forecasting model which linked the Takagi-Sugeno fuzzy inference theory with neural network, that can forecast flood only by using the rainfall and flood level and discharge data without using lots of physical data that are necessary in existing hydrological rainfall-runoff model is established. The accuracy of flood forecasting using this model is determined by temporal distribution and number of used rainfall and water level as input data. So first of all, the various combinations of input data were constructed by using rainfall and water level to select optimal input data combination for applying Neuro-Fuzzy flood forecasting model. The forecasting results of each combination are compared and optimal input data combination for real-time flood forecasting is determined.
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.756-760
/
2007
삽교천 홍수예보시스템은 1999년에 개발되어 현재까지 운영되고 있으나, 개발 이후 유역특성의 변화를 반영한 모형 개선이 이루어지지 않았고, 삽교천 하구둑의 영향을 고려한 모형은 개발되어 있지 않은 실정이다. 이 지역 중에서 특히 천안/아산지역은 급격한 인구증가와 산업화 및 도시화에 의해 면적당 자산의 고도화가 증가하며, 이에 따라 홍수시 피해잠재능은 점점 증가하고 있는 상황이다. 또한, 하구둑의 영향을 고려한 모형을 개발하여 정확한 홍수예보를 위한 전산시스템의 개선자료를 제공할 필요가 있다. 따라서 삽교천 하구둑에 의한 배수영향을 고려하기 위해 FLDWAV모형을 이용하고, 삽교천 하구둑 수문조작에 따른 내수위(하류경계 조건)를 예측하는 모형을 개발하여 하구둑 운영을 고려한 연계모형을 개발하였다. 향후 설치될 우강지점에 대한 수위자료가 구축되면 예측의 정확도를 검증할 수 있으며, 홍수예보시 정확성을 높일 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.