• Title/Summary/Keyword: 혼화

Search Result 1,111, Processing Time 0.028 seconds

Effect of Repeated Addition of Admixture on Mechanical Properties of Concrete (혼화제의 반복된 추가가 콘크리트의 역학적 특성에 미치는 영향)

  • Lee, Si-Woo;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.148-153
    • /
    • 2010
  • Concrete used as structural materials in construction fields is supplied as a type of carry and placement by ready-mixed concrete (RMC) truck after proportioning in batch plant. However, during conveying of concrete to the field, due to traffic jam, weather, etc., it is not easy to maintain adequate slump. In this case, we think that the insert of an admixture to concrete has no problem in concrete. For RMC, when the slump is not sufficient, the truck driver insert water additionally without any considerations. After that, concrete is placed after re-mixing and this leads to serious reasons such as strength reduction less than design strength considered in the structural design. Accordingly, in this study, to solve the problem to insert water without realistic reasons in RMC, basic experimental studies were performed. Admixtures used frequently in fields were selected and addition's repeated time and elapsed time interval after initial addition of the admixture were selected as main variables. Authors want that the results of this study is used as basic data to resolve the question.

A Study for Application of Polycarboxilic Type Admixture to Precast High-Strength Concrete Piles (프리캐스트 고강도 콘크리트(PHC) 파일에 조강형 폴리카본산(PC)계 혼화제의 적용에 관한 연구)

  • Yi, Seong Tae;Noh, Jae Ho;Park, Chul Ju;Heo, Hyung Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.263-270
    • /
    • 2011
  • In this study, the performance of Poly-Naphthalene Sulfonate (PNS) type-admixture used widely in South Korea and Polycarboxilic type-admixture(i.e., WF2000) developed in the J company of the domestic, for precast concrete products produced in the factories, was evaluated. With the 20% reduced usage of WF2000 compared to PNS type-admixture, workability was considerably improved due to high water-reducing ratio, accelerating effect of concrete setting and accelerant dispersant action, which the product has, under the high temperature. In addition, the development of initial and long-term strengths of PHC plies was predominant. For WF2000, it is also possible to correspond with the change of original materials and environmental conditions since the control of water-reducing and supporting forces is feasible. Accordingly, it was noted that WF2000 is superior for deterioration of production & workability and bad casting problems in summer and the solution of initial strength reduction problem due to the delay of setting in winter.

Characteristics of Calcium Leaching Resistance for Concrete Mixed with Mineral Admixture (광물질 혼화재를 혼합한 콘크리트의 칼슘용출 저항 특성)

  • Choi, So-Yeong;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.59-67
    • /
    • 2016
  • Concrete is a very useful construction material for the sealing disposal of hazardous substances. In general, mass concrete is applied to these structures. And, the mineral admixtures are recommended for the long term performance. Calcium leaching could be happened due to the contact with pure water in underground structures. Thus, it is needed to evaluate the resistance of calcium leaching for concrete mixed with mineral admixtures. From the test results, the mineral admixtures are effective to the improvement of long term compressive strength and chloride diffusion coefficient in concrete members. When calcium leaching is happened, however, the reduction of compressive strength and chloride penetration resistance is severe than OPC case, the micro pore distribution is adversely affected. Consequently, when the mineral admixtures are applied to underground structures which is exposed to calcium leaching environment, it is desirable to reduce water-to-binder ratio, to expose after the sufficient pozolanic reaction, and to use BFS than FA.

A Study of the Effect of Mineral Admixtures on the Chloride Diffusion of the Concrete Immersed in Chloride Solution (무기질 혼화재가 염수침지한 콘크리트의 염화물 확산에 미치는 영향에 관한 연구)

  • Kim Dong-Seok;Yoo Jae-Kang;Park Sang-Joon;Won Cheol;Kim Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.679-686
    • /
    • 2005
  • The corrosion of reinforcement induced by chloride ingress is the main deterioration cause of coastal reinforced concrete structures. In this paper, an experimental study was executed to investigate the effect of the kinds and replacement ratios of mineral admixtures (fly-ash, ground granulated blast-furnace slag silica fume and meta-kaolin), W/B and curing time on chloride diffusion of concrete by long-time immersion test in chloride solution. According to the result, the use of mineral admixtures was effective in improving the resistant to chloride ingress. The chloride penetration depth and diffusion coefficient were decreased as replacement ratios of mineral admixture were increased. The kind and replacement ratio of the mineral admixture are more important than the W/B in reducing the chloride diffusion of concrete. Chloride binding capacity of mineral admixture, which was sequenced in the order of MK

Quality Evaluation and Mix Proportion of Antiwashout Underwater Concrete with Mineral Admixture (광물질 혼화재료를 사용한 수중불분리성 콘크리트의 배합 및 품질평가 방안 검토)

  • Park, Yong Kyu;Kim, Hyun Woo;Yoon, Ki Woon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.679-686
    • /
    • 2014
  • In this research, the mix proportion of the antiwashout underwater concrete with the mineral admixture was evaluated. It can reduce the amount used of the antiwashout admixture (hereinafter referred to as "AWA") and satisfy the properties of concrete. In addition, the review for the difference of the test and practical affairs were conducted. Optimized unit quantity of water of antiwashout underwater concrete and the amount used of AWA was revealed by $190kg/m^3$, 0.9%/W, respectively. In particularly, the mix design is reduced by 5% than the W/B of target strength even though the W and AWA reduced. Therefore, it will have the economical feasibility and qualities including the material separation, resistance characteristic and compressive strength, and etc. The stable value was shown in 1 point of minute passed in the measurement of the turbidity amounts using the turbidimeter after the checker insertion. However, it needs to be reviewed for the interrelationship between turbidity measuring machine and KCI-AD102 standard method. There were no significant differences of compressive strength of specimens in the water depending on the production methods.

Soil Incorporated and Soil Surface Treatment of Herbicides before Transplanting of Paddy Rice (제초제의 수도 이앙전 토양혼화 및 토양표면 처리에 관한 연구)

  • Ryang Whan Seung
    • Korean journal of applied entomology
    • /
    • v.12 no.2
    • /
    • pp.63-70
    • /
    • 1973
  • Weed control tests with 6 herbicides which seem to have selectivity of absorption by roots of rice were carried out by the rate of application, the depth of incorporation and the time of application in comparison with the after transplanting treatment of MO in SiCL soil. Soil-incorporated treatment of Ronstar, Saturn, TOK and Saturn·5 were applied before transplanting and soil surface treatment of Machete, PCP and MON·0385 were applied. The results are summarized as follows: 1. Initial crop injury and growth Soil surface treatment before transplanting of PCP of 1,000g ai/10a caused heavy initial injury, which was recovered from by about 50 days after application. Saturn-S at 4kg prod.110a caused slight crop injury sectionally, which was soon recovered from. And little crop injury was caused by other treatments. 2. Effect in weed control Excellent weed control of 90 to 97.7 percent was obtained, when measured 27 days after transplanting, by all the treatments. More than 90 percent weed control was maintained for about 73 days after transplanting by all the treatments of Ronstar and Saturn-S of 3 to 4kg prod./10a. The treatments of MON-0385 of 175g ai/10a and TOK of 280g ai/10a showed somewhat poor weed control. 3. Yield No reduction of yield was observed at all the plots except the non·weeded plot at which 11.4 percent yield reduction was observed compared with the hand weeding plot. The yield was increased by the 1 DBT and 2 DBT treatments of Machete of 210g ai/10a, the treatments of Ronstar of 60g ai/10a, when incorporated to the depth of 2.5 and 12cm, the incorporation treatment of Saturn-S of 3kg prod./10a and 1 DBT treatment of MON-0385 of 175g ai/10a.

  • PDF

Fabrication of Concrete Containing Mechanochemically Surface Treated(MST) Fly Ash (Mechanochemical 표면처리한 Fly Ash 혼화 Concrete의 제조)

  • Lee, Hyung-Jik;Koo, Ja-Hun;Yoo, In-Sang;Song, Doo-Gyoo;Joung, Hae-Kyoung;Kwon, Hyouk-Byoung;Yoon, Sang-Ok;Lee, Hyung-Bock;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.135-144
    • /
    • 2002
  • Fabrication of high strength structural concrete was investigated by using a mechanochemically Surface Treated Fly Ash(MSTFA) induced by mechanochemical processing through ball-milling of (90 wt% As Recevied Fly Ash(ARFA) + 10wt% cement) mixture, which was compared to the specimen fabricated by using As Received Fly Ash(ARFA) in terms with compressive strength and microstructures. The compressive strength of concrete specimen fabricated by using MSTFA represented 10-20% and 2-7% higher value than that for the case of using ARFA and BPFA in each cases. Increased compressive strength as above mentioned is considered to be caused by mutually increased affinity generated between cement and fly ash during mechanochemical processing.

The Properties of Strength and Durability of Concrete Using Early-Strength Poly Carbonic Acid Admixture (폴리카르본산계 조강혼화제 혼합 콘크리트의 강도 및 내구 특성)

  • Lee, Sang-Ho;Hong, Kyung-Sun;Moon, Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.217-224
    • /
    • 2007
  • This study reports the properties of high early strength & durability of concrete using PC admixture. To apply these data to construction site, we did the lab tests. The target of this study is to accomplish early strength of concrete (5.0 Mpa/18 hr), and we did the durability tests such as length change test, chloride ion penetration test, fleeting and thawing test, adiabatic test, etc. And we tested the porperties of concrete by the different factors, such as the type of admixtures, curing temperature, the amount of binder, etc. Through the test of concrete using the different type of admixture, PC type was more excellent than PNS type admixture. As a result, we made a concrete of high early strength concrete, and excellent durable concrete. According to these tests, we concluded that we can apply this type of PC admixture to the civil & construction site, and we can reduce the term of works and finally we will accomplish the economical construction.

Effects of Mineral Admixture on the Characteristics of Grout for PSC Bridge (광물질 혼화재가 PSC 교량용 그라우트의 특성에 미치는 영향)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Ahn, Ki-Hong;Kang, Su-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • The study investigates the effects of the type, replacement ratio and method of use of mineral admixtures on the fluidity, bleeding ratio, volumetric change and compressive strength of the grout in order to provide basic data for the development of high-quality grout for PSC bridges. In view of the results relative to the type and replacement ratio of the mineral admixtures, it appears that fly ash has practically no effect on the improvement of the fluidity nor on the reduction of bleeding and shrinkage of the grout. On the contrary, blast furnace slag and silica fume appear to have significant effect on the improvement of the fluidity or on the reduction of bleeding and shrinkage of the grout. With regard to the combined use of mineral admixtures, the combination of fly ash and blast furnace slag provides satisfactory fluidity but with significant increase of bleeding and shrinkage, whereas the combination of blast furnace slag and silica fume reduces bleeding and shrinkage but with large loss of the fluidity. On the other hand, the combination of fly ash and silica fume results in satisfactory fluidity accompanied with fair reduction of bleeding and shrinkage of the grout. In view of these results, the type, replacement ratio and method of use of the mineral admixtures are seen to influence the fluidity, bleeding and volumetric change of the grout. Accordingly, it is necessary to select the mineral admixtures considering these effects for their exploitation in the grout of PSC bridges.