• Title/Summary/Keyword: 혼화

Search Result 1,112, Processing Time 0.024 seconds

The Quality Properties of Mortar for Using Hydraulic Modification Sulfur as Admixture for Cement (개질유황을 시멘트 대체 혼화재로 사용하기 위한 모르타르의 품질특성)

  • Kim, Ki-Hyung;Shin, Do-Chul;Jung, Ho-Jin;Lee, Jae-Nam;Kim, Byiung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.81-88
    • /
    • 2011
  • This study ascertained the possibility of use of sulfur abstracted from waste sulfur as a construction material through modification process and manufacturing high efficiency modification sulfur with superior quality on dispersibility and hydrophilic in normal temperature. Mechanic, behavior and chemical durability of mortar with added modification sulfur. The results of the study are as follows. The fluidity of mortar mixed with modification sulfur and compressive strength decreased as ratio of mixing of them increases. Flexural, tensile and bond strength of the mortar are also improved and shrinkage of it increases. Especially chemical durability of the mortar showed excellent resistance with the increase of ratio of mixing. Therefore this research has confirmed the modification sulfur can be used as a addmixture for cement.

  • PDF

Fire Resistance Performance Test of High Strength Concrete by Type of Mineral Admixture (혼화재 종류에 따른 고강도 콘크리트의 내화성능 평가)

  • Kwon, Ki-Seok;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.597-605
    • /
    • 2015
  • The method of concrete mix design used in this study aims to achieve the identical specified design strength, applying different types and replacement ratio of mineral admixtures and afterwards, fire tests were conducted using the standard time-temperature curve specified in the ASTM E119 to identify the influences of the types of mineral admixtures on the fire resistance performance of high strength concrete(HSC). The least spalling was observed in the test specimen containing blast furnace slag as a partial replacement of cement, while the most significant spalling phenomena were observed in the blast furnace slag test specimen that silica-fume was added in. In particular, the reasonable volume of spalling was observed when solely replaced by silica fume. However, the influence of the cement replacement by silica fume and blast furnace slag on the increases of spalling can be explained through blocked pores by the fine particles of silica fume, leading to decreases in permeability.

A Method on the Rapid Assessment of Resistance to Chloride Ion Penetration for Mortar and Concrete with Mineral Admixtures (혼화재를 사용한 모르타르 및 콘크리트의 염소이온 침투 저항성 평가)

  • Park Jung-Jun;Kim Sung-Wook;Koh Kyung-Taek;Lee Jong-Suk;Lee Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.485-492
    • /
    • 2004
  • In this study, ASTM C 1202 which is most commonly used for evaluating the penetration resistance into the concrete is reviewed. The test results by ASTM C 1202 showed that the passed charge could be underestimated as the $OH^-$ ion concentration in the concrete is lowered when the concrete is mixed with the admixtures. Therefore, the modified method using the distilled water was proposed in the paper. According to the test results, the modified method is not susceptible to $OH^-$ ion and temperature rise. In addition, the long term emersion test for the concrete mixed with the admixtures in the NaCl solution showed that the chloride diffusion coefficient tested by the modified method have higher correlation compared to the conventional ASTM method.

Durability Performance Evaluation On Early-Aged Concrete with Rice Husk Ash and Silica Fume (Rice Husk Ash와 실리카퓸을 혼입한 초기재령 콘크리트의 내구성능 평가)

  • Saraswathy, Velu;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.343-351
    • /
    • 2015
  • Currently, lots of researches have been performed for reducing cement usages due to increasing social/engineering problems caused by $CO_2$ emission. Supplementary cement materials like fly ash, slag, and silca fume are usually employed for cement replacement, and nowadays rice husk ash (RHA) is widely studied for enhancement of concrete performance as mineral admixture. In this paper, concrete samples with RHA and SF which is known for its engineering advantages are prepared and a resistance to chloride attack is evaluated in early-aged concrete. For the work, replacement ratios of 10~30% for RHA concrete and 2~8% for SF concrete are considered, and various durability tests such as density, void, sorptivity, current measurement, and chloride diffusion coefficient are performed including mechanical test like compressive and tensile strength. Replacement of RHA 10~15% shows better improvement of corrosion resistance and strength than that of SF 2~4% and normal concrete, which shows a strong applicability for utilization as construction materials.

Plastic Shrinkage Cracking Reduction of Press Concrete Using Admixtures in Basement (주차장바닥에서 혼화재료들을 사용한 누름콘크리트의 소성수축 균열저감)

  • Kim, Young-Su;Lee, Dong-Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.416-424
    • /
    • 2019
  • In Korea, press concrete in basements is mainly applied using plain concrete. This system has undesirable defects such as cracks caused by plastic shrinkage and irregular temperature distribution. To solve this problem, metal lath and fibers have been used in the past. However, they have not been effective in controlling cracks. This study analyzed the reduction of plastic shrinkage cracking for press concrete using various admixtures in a basement has been. In the air contents test, the specimens with various admixtures showed air contents similar to plain concrete (4.5±1.5%). The specimens using silica fume, super plasticizer agent, and SBR showed higher compressive strength by about 10-15% than plain concrete. Cracking decreased when the MC, super plasticizer, and SBR were added. When MC was used in the concrete, the plastic shrinkage did not occur.