• Title/Summary/Keyword: 혼합 커널

Search Result 26, Processing Time 0.022 seconds

Relation Extraction based on Composite Kernel using Pattern Similarity of Predicate-Argument Structure (술어-논항 구조의 패턴 유사도를 활용한 혼합 커널 기반 관계 추출)

  • Jeong, Chang-Hoo;Chun, Hong-Woo;Choi, Yun-Soo;Song, Sa-Kwang;Choi, Sung-Pil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.276-279
    • /
    • 2011
  • 문서 내에 존재하는 개체 간의 관계를 자동으로 추출할 때 다양한 형태의 문서 분석 결과를 활용할 수 있다. 본 논문에서는 기존에 개발되어 비교적 높은 성능을 보여준 트리 커널의 구절 구조 유사성 정보와 두 개체 사이의 유의미한 연관관계를 표현하는 술어-논항 구조 패턴의 유사성 정보를 활용하는 혼합 커널을 제안한다. 구문적 구조를 이용하는 기존의 트리 커널 기법에 술어와 논항 간의 의미적 구조를 활용하는 술어-논항 구조 패턴 유사도 커널을 결합하여 상호보완적인 혼합 커널을 구성하였고, 실험을 통하여 개발된 커널의 성능을 측정하였다. 실험 결과 구절 구조 정보를 이용하는 트리 커널만을 단독으로 사용했을 때보다 술어-논항 구조의 패턴 정보를 결합한 혼합 커널을 사용했을 때에 더 좋은 성능을 보이는 것을 확인할 수 있었다. 이는 관계 인스턴스에 대한 구절 구조 정보뿐만 아니라 개체 간의 유의미한 연관관계를 표현해주는 술어-논항 구조 패턴 또한 관계 추출 작업에 매우 유용한 정보임을 입증하고 있다.

Relation Extraction based on Composite Kernel combining Pattern Similarity of Predicate-Argument Structure (술어-논항 구조의 패턴 유사도를 결합한 혼합 커널 기반관계 추출)

  • Jeong, Chang-Hoo;Choi, Sung-Pil;Choi, Yun-Soo;Song, Sa-Kwang;Chun, Hong-Woo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.73-85
    • /
    • 2011
  • Lots of valuable textual information is used to extract relations between named entities from literature. Composite kernel approach is proposed in this paper. The composite kernel approach calculates similarities based on the following information:(1) Phrase structure in convolution parse tree kernel that has shown encouraging results. (2) Predicate-argument structure patterns. In other words, the approach deals with syntactic structure as well as semantic structure using a reciprocal method. The proposed approach was evaluated using various types of test collections and it showed the better performance compared with those of previous approach using only information from syntactic structures. In addition, it showed the better performance than those of the state of the art approach.

Relation Extraction based on Extended Composite Kernel using Flat Lexical Features (평면적 어휘 자질들을 활용한 확장 혼합 커널 기반 관계 추출)

  • Chai, Sung-Pil;Jeong, Chang-Hoo;Chai, Yun-Soo;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.642-652
    • /
    • 2009
  • In order to improve the performance of the existing relation extraction approaches, we propose a method for combining two pivotal concepts which play an important role in classifying semantic relationships between entities in text. Having built a composite kernel-based relation extraction system, which incorporates both entity features and syntactic structured information of relation instances, we define nine classes of lexical features and synthetically apply them to the system. Evaluation on the ACE RDC corpus shows that our approach boosts the effectiveness of the existing composite kernels in relation extraction. It also confirms that by integrating the three important features (entity features, syntactic structures and contextual lexical features), we can improve the performance of a relation extraction process.

Semiparametric and Nonparametric Mixed Effects Models for Small Area Estimation (비모수와 준모수 혼합모형을 이용한 소지역 추정)

  • Jeong, Seok-Oh;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.71-79
    • /
    • 2013
  • Semiparametric and nonparametric small area estimations have been studied to overcome a large variance due to a small sample size allocated in a small area. In this study, we investigate semiparametric and nonparametric mixed effect small area estimators using penalized spline and kernel smoothing methods respectively and compare their performances using labor statistics.

Extraction of Relationships between Scientific Terms based on Composite Kernels (혼합 커널을 활용한 과학기술분야 용어간 관계 추출)

  • Choi, Sung-Pil;Choi, Yun-Soo;Jeong, Chang-Hoo;Myaeng, Sung-Hyon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.988-992
    • /
    • 2009
  • In this paper, we attempted to extract binary relations between terminologies using composite kernels consisting of convolution parse tree kernels and WordNet verb synset vector kernels which explain the semantic relationships between two entities in a sentence. In order to evaluate the performance of our system, we used three domain specific test collections. The experimental results demonstrate the superiority of our system in all the targeted collection. Especially, the increase in the effectiveness on KREC 2008, 8% in F1, shows that the core contexts around the entities play an important role in boosting the entire performance of relation extraction.

A Dual Real-Time Scheduling Design under Real-Time Constraints Kernel Environments (실시간 제약 커널 환경하에서의 이중 실시간 스케쥴링 설계)

  • 인치호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.369-375
    • /
    • 2001
  • This paper proposes a dual real-time scheduling design under real-time constraints kernel environments. In this paper, we have designed both the real-time kernel and the general kernel that have their different properties to satisfy these properties, that is, interrupt latency, scheduling precision, and message passing. In real-time tasks, interrupt processing should be run. In general kernel, non real-time tasks or general tasks are run. Also, when tasks conflict, it executed the mixed priority scheduling that non real-time kernel executed static scheduling and real-time kernel executed dynamic priority transformation scheduling, that is, least-laxity-first/minimization preemption scheduling. We have compared the results of this study for performance of the proposal real-time kernel with both RT Linux 0.5a and QNX 4.23A, that is, of interrupt latency scheduling precision and message passing.

  • PDF

커널 판별분석의 오분류확률에 대한 붓스트랩 조정

  • 백장선
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.249-265
    • /
    • 1995
  • 본 논문에서는 확률분포가 알려져 있지 않은 두 모집단 중 어느 하나로 새로운 관측치를 분류할 때 오분류확률이 분석자에 의해 사전에 정해진 수준에 부합할 수 있도록 커널 판별함수의 임계치를 결정하였다. 정해진 오분류확률을 만족시키기 위한 판별함수의 임계치는 붓스트랩(bootstrap)기법을 판별 함수에 적용시켜 계산된다. 본 논문에서 제시도된 방법은 모집단에 대한 모수적 가정이 없으므로 어느 분포에도 적용가능하며, 모집단이 정규분포, 대수정규분포, 이산형과 연속형 변수가 혼합된 분포의 경우 모의실험을 통하여 그 성능에 대한 검증을 하였다.

  • PDF

M-quantile kernel regression for small area estimation (소지역 추정을 위한 M-분위수 커널회귀)

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.4
    • /
    • pp.749-756
    • /
    • 2012
  • An approach widely used for small area estimation is based on linear mixed models. However, when the functional form of the relationship between the response and the input variables is not linear, it may lead to biased estimators of the small area parameters. In this paper we propose M-quantile kernel regression for small area mean estimation allowing nonlinearities in the relationship between the response and the input variables. Numerical studies are presented that show the sample properties of the proposed estimation method.

Development of Flexible Bluetooth Protocol Stack Based on Linux (리눅스 기반의 유연한 블루투스 프로토콜 스택 개발)

  • 신기수;조철수;박장식;김현태
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.427-430
    • /
    • 2002
  • 본 논문에서는 리눅스상에서 블루투스 프로토콜 스택을 구현하는 방법에 대하여 제안한다. 리눅스는 Unix와 동일한 파일 시스템 구조와 시스템 접근 방법을 사용한다. 리눅스에서는 여러 가지 장치에 대해 Device class라는 구조를 가지고 접근하며, Unix시스템과 같이 각각의 디바이스들은 Block 또는 Character device file이라는 형태로 구현되고, 네트워크 인터페이스와 기타 장치들은 특정한 프로토콜 등으로 구현 및 접근을 하게 된다. 리눅스 시스템에서 기존 및 특정한 응용프로그램들이 블루투스 장치를 사용하도록 하려면 블루투스 프로토골 스택을 디바이스 드라이브 형태로 구현하여야 하며, 리눅스에서는 이러한 디바이스 드라이브들을 커널 내에 적재, 혹은 비적재에 따라 커널 내에서 구현하거나 모듈의 형태로 구현하여야 한다. 본 논문에서는 리눅스에서의 디바이스 드라이브를 구현방법을 제안한다. 커널과 모듈을 혼합한 블루투스 프로토콜 스택의 세부적인 구현 방법과 특수한 목적에 쉽게 적용이 가능한 유연한 블루투스 프로토콜 스택을 제안한다.

  • PDF

Performance Enhancement of Tree Kernel-based Protein-Protein Interaction Extraction by Parse Tree Pruning and Decay Factor Adjustment (구문 트리 가지치기 및 소멸 인자 조정을 통한 트리 커널 기반 단백질 간 상호작용 추출 성능 향상)

  • Choi, Sung-Pil;Choi, Yun-Soo;Jeong, Chang-Hoo;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.85-94
    • /
    • 2010
  • This paper introduces a novel way to leverage convolution parse tree kernel to extract the interaction information between two proteins in a sentence without multiple features, clues and complicated kernels. Our approach needs only the parse tree alone of a candidate sentence including pairs of protein names which is potential to have interaction information. The main contribution of this paper is two folds. First, we show that for the PPI, it is imperative to execute parse tree pruning removing unnecessary context information in deciding whether the current sentence imposes interaction information between proteins by comparing with the latest existing approaches' performance. Secondly, this paper presents that tree kernel decay factor can play an pivotal role in improving the extraction performance with the identical learning conditions. Consequently, we could witness that it is not always the case that multiple kernels with multiple parsers perform better than each kernels alone for PPI extraction, which has been argued in the previous research by presenting our out-performed experimental results compared to the two existing methods by 19.8% and 14% respectively.