• Title/Summary/Keyword: 혼합형 사이클

Search Result 15, Processing Time 0.024 seconds

공기흡입형 고속추진기관 기술동향

  • Cha, Bong-Jun;Gang, Sang-Hun;Yang, Su-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.4 no.1
    • /
    • pp.44-54
    • /
    • 2006
  • 초음속 또는 극초음속 비행체용 추진기관은 산화재 공급방식에 따라 공기흡입형과 로켓 그리고 이들을 혼합한 형태인 복합사이클 추진기관으로 구분할 수 있다. 그러나 재사용이 가능하다는 측면에서 미래의 추진기관들은 공기흡입형과 복합사이클 추진기관들이 주류를 이룰 것으로 예상된다. 본 논문에서는 차세대 초고속 추진기관으로 유력시 되고 있는 공기흡입형 추진기관들 중에서 램/스크램 제트 추진기관들을 중심으로 세계적인 개발동향과 기술개념을 기술하였으며 이 두 가지 추진기관들을 바탕으로 구성된 복합사이클 추진기관들에 대한 개념들을 소개하였다. 항공우주선진국들을 중심으로 차세대 고속비행체 및 고속추진기관의 실용화 개발 움직임들이 구체화 되고 있는 가운데 최근 들어 비록 미약하지만 한국항공우주연구원을 비롯한 몇 개의 기관 및 대학에서 램제트/스크램제트 추진기관에 대한 핵심 요소기술 연구들이 진행되고 있는 것은 그나마 다행이라 할 수 있으며 본 논문이 차세대 초고속 추진기관에 대한 이해를 돕는데 도움이 되기를 기대한다.

  • PDF

A Study on the Thermodynamic Cycle of OTEC system (해양 온도차발전 시스템의 열역학 사이클에 대한 연구)

  • Kim, Nam-Jin;Shin, Sang-Ho;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.9-18
    • /
    • 2006
  • In this paper, the thermodynamic performance of OTEC cycle was examined. Computer simulation programs were developed for simple Rankine cycle, regenerative Rankine cycle, Kalina cycle, open cycle and hybrid cycle. For the simple Rankine cycle, the results show that newly developed fluids such as R410A and R32 that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. Also, simple Rankine cycle OTEC power plant can practically generate electricity when the difference in warm and cold sea water inlet temperatures are greater than $14^{\circ}C$. The regenerative Rankine cycle showed a 1.5 to 2% increase in energy efficiency compared to the simple Rankine cycle while the Kalina cycle employing ammonia/water mixture showed a 2-to-3% increase in energy efficiency, and the overall cycle efficiencies of hybrid cycle and open cycle were 3.35% and 4.86%, respectively.

Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to the working fluid and the cycle (작동유체 및 사이클에 따른 해양온도차발전용 유기랭킨사이클의 성능분석)

  • Kim, Jun-Seong;Kim, Do-Yeop;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.881-889
    • /
    • 2015
  • Ocean thermal energy conversion is an organic Rankine cycle that generates power using the temperature difference between surface water and deep water. This study analyzes the thermodynamic efficiency of the cycle, which strongly depends on the working fluid and the cycle configuration. Cycles studied included the classical simple Rankine cycle, Rankine cycles with an open feedwater heater and an integrated regenerator, as well as the Kalina cycle. Nine kinds of simple refrigerants and three kinds of mixed refrigerants were investigated as the working fluids in this study. Pinch-point analysis that set a constant pinch-point temperature difference was applied in the performance analysis of the cycle. Results showed that thermodynamic efficiency was best when RE245fa2 was used as the working fluid with the simple Rankine cycle, the Rankine cycles with an open feedwater heater and an integrated regenerator, and when the mixing ratio of $NH_3/H_2O$ was 0.9:0.1 in the Kalina cycle. If the Rankine cycles with an open feedwater heater, an integrated regenerator, and the Kalina cycle were used for ocean thermal energy conversion, efficiency increases could be expected to be approximately 2.0%, 1.0%, and 10.0%, respectively, compared to the simple Rankine cycle.

Basic performance analysis of ocean thermal energy conversion using the refrigerant mixture R32/R152a (R32/R152a 혼합냉매를 적용한 해양온도차발전의 기초성능해석)

  • Cha, Sang Won;Lee, Ho Saeng;Moon, Deok Soo;Kim, Hyeon Ju
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.502-507
    • /
    • 2014
  • In this paper, performance characteristics of cycles were studied when mixed working fluid was used for ocean thermal energy conversion (OTEC). Among the various mixed refrigerants for industrial heat-pump, R32/R152a used in ocean thermal energy conversion system. For simulations, R32/R152a were used in existing closed cycle and Kalina cycle which is used only ammonia and water as mixed refrigerant. Temperature of the warm heat source was 26 and 29 celsius degree, temperature of the cold heat source was 5 celsius degree. In results of simulation, Gross power of the closed cycle on R32 was 22kW, and efficiency of the cycle was 2.02%. When the mixed refrigerant of R32/R152a, in the ratio of 90 to 10, gross power of the closed cycle was 29.93kW, and efficiency of the cycle was 2.78%. Gross power and cycle efficiency of R32/R152a increased by 36% and 37% than those of existing single refrigerant. Additionally, the same simulations were conducted in Kalina cycle with the same various composition ratio of mixed refrigerant.

Study on OTEC for the Production of Electric Power and Desalinated Water (전력 및 담수생산을 위한 해양온도차발전에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.124-130
    • /
    • 2010
  • Ocean Thermal Energy Conversion(OTEC) power plants have been examined as a viable option for supplying clean energy. This paper evaluated the thermodynamic performance of the OTEC Power system for the production of electric power and desalinated water. The results show that newly developed fluids such as R32, R125, R143a, and R410A that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. Overall cycle efficiency of open cycle is the lowest value of 3.01% because about 10% of the gross power is used for pumping out non-condensable gas. Also, the hybrid cycle is an attempt to combine the best features and avoid the worst features of the open and closed cycles. The overall cycle efficiency of hybrid cycle is 3.44% and the amount of desalinated water is 0.0619 kg/s.

A Hybrid Genetic Algorithm Using Epistasis Information for Sequential Ordering Problems (서열순서화문제를 위한 상위정보를 이용하는 혼합형 유전 알고리즘)

  • Seo Dong-Il;Moon Byung-Ro
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.661-667
    • /
    • 2005
  • In this paper, we propose a new hybrid genetic algorithm for sequential ordering problem (SOP). In the proposed genetic algorithm, the Voronoi quantized crossover (VQX) is used as a crossover operator and the path-preserving 3-Opt is used as a local search heuristic. VQX is a crossotver operator that uses the epistasis information of given problem instance. Since it is a crossover proposed originally for the traveling salesman problem (TSP), its application to SOP requires considerable modification. In this study, we appropriately modify VQX for SOP, and develop three algorithms, required in the modified VQX, named Feasible solution Generation Algorithm, Precedence Cycle Decomposition Algorithm, and Genic Distance Assignment Method. The results of the tests on SOP instances obtained from TSPLIB and ZIB-MP-Testdata show that the proposed genetic algorithm outperforms other genetic algorithms in stability and solution quality.

Intelligent Order Management System Design Using Fuzzy Method (퍼지기법을 활용한 지능형 주문관리시스템 설계)

  • Park, Doo-jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.554-555
    • /
    • 2012
  • 주문관리시스템은 여러 고객들로부터 다양한 주문에 대응하여 물류센터에 적정한 재고관리하기 위해 필요한 수량만큼 공장으로 주문을 관리하는 시스템이다. 일반적으로 주문관리시스템에서 사용하는 재고관리기법은 품목별로 ABC 분석을 통하여 정기발주법, 정량발주법, 2개 선반법이 주로 사용되고 있다. 그러나 이러한 발주법은 물류센터에 보관되는 제품의 특성이 다품종 소량 및 라이프사이클이 점차 짧아짐에 따라 재고부족 또는 과잉재고를 가져와 고객에 대한 서비스 감소 또는 재고유지비가 증가하는 문제점을 갖는다. 본 논문에서는 물류센터 내 적정한 재고를 유지하기 위해 퍼지기법을 활용하여 정기발주법과 정량발주법의 혼합한 지능형 주문관리시스템의 설계 방안을 제안한다.

  • PDF

An Investigation of Combustion and EmissionCharacteristics in Heavy-Duty Hydrogen-CNG Engine (중대형 수소-천연가스 기관의 수소혼합율 변화에 대한 연소 및 배기특성)

  • LIM, H.S.;KIM, Y.Y.;LEE, J.T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.276-282
    • /
    • 2003
  • A hydrogen enriched CNG engine can be stably operated at ultra lean condition and reduce emission extremely. It also has advantage to increase gradually the use of hydrogen for the coming hydrogen-energy age. In this studies, the combustion and emission characteristics of heavy-duty hydrogen-CNG engine were investigated to verify the enhancement of performance by enriched hydrogen into natural gas. The results showed that a hydrogen-CNG engine could achieve ultra lean operation and low emission, while power was reduced by the decrease of intake air flow.

Ignition Test of an Oxidizer Rich Preburner (산화제과잉 예연소기 점화시험)

  • Moon, Il-Yoon;Moon, In-Sang;Yoo, Jae-Han;Jeon, Jae-Hyoung;Lee, Seon-Mi;Hong, Moon-Geun;Ha, Seong-Up;Kang, Sang-Hun;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.869-872
    • /
    • 2011
  • Ignition tests of an oxidizer rich preburner for a staged combustion cycle liquid rocket engine were performed to evaluate combustion performance. Design operation conditions of the tested oxidizer rich preburner are about 60 of OF ratio and 20 MPa of combustion pressure. The entire kerosene and some LOx injected into the mixing head is burned in combustion chamber and the remaining LOx injected through center holes of combustion chamber is vaporized. Full flow ignition method with hypergolic fuel was used. Each propellant was supplied in two stages for soft ignition. Test results, low frequency oscillation was occurred in low flow rate conditions under 45% of design flow rate. Stable ignition in the course of design combustion pressure was able to induce by minimization of low flow rate ignition region to escape low frequency oscillation.

  • PDF

Durability Evaluation of Gangway Ring for the Articulated Bogie of High speed Railway Vehicle (고속철도차량 관절대차 갱웨이 링의 내구성 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2019
  • To improve ride quality and running stability of high speed train(HST), it is important that connection between coaches adopts the articulated bogies by using a gangway ring, unlike the conventional independent bogies assembled with car bodies. Although the gangway ring should be ensured absolute safety against passenger movement between coaches during train operation, there is still a lack of quantitative durability criteria of that. Therefore, in order to improve the passenger safety of HST, it is important to study the test requirements on durability evaluation for the ring. In this study, seven mixed loading cases were derived from the triaxial loading(vertical/lateral/longitudinal) modes. The safety factor of each component is at least 2.4 or more from the results of the finite element analysis. In addition, fatigue safety was evaluated through durability analysis from the viewpoint of strain-life design. Durability tests for the gangway ring carried out a total of 10 million cycles in 4 phases load conditions. After the durability test, the defect of each component was investigated using nondestructive testing techniques.