슈퍼스칼라 프로세서에서 명령어 수준 병렬성(Instruction Level Parallelism)을 적극적으로 활용하기 위해서는 명령들 사이에 존재하는 제어 종속관계 및 데이타 종속관계를 극복하는 것이 필수적이다. 데이타 값 예측은 하나의 명령 결과가 생성되기 전에 미리 결과 값을 예측하고 이 예측된 결과를 사용하여 데이타 종속관계가 있는 명령들을 투기적으로 실행(speculative execution)하는 기법이다. 본 논문에서는 동적 분류 능력을 갖는 혼합형 데이타 값 예측기를 제안한다. 제안된 예측기는 최근 값 예측기, 스트라이드 예측기 및 2 단계 예측기를 결합한 혼합형으로 구성되며, 예측되는 명령은 하드웨어에 의한 동적 분류에 의해 각 예측기로 할당된다. 각 명령들의 특성에 따라 각 예측기로 실행 시에 동적 분류됨으로써 각 예측기는 기존의 혼합형 방식보다도 더욱 효과적으로 활용될 수 있다. 제안된 방식의 타당성 검증을 위해 실행구동방식(execution-driven) 시뮬레이터를 사용하여 SPECint95 벤치마크를 시뮬레이션하여 비교한다. 실험 결과 Instruction Per Cycle 비교실험에서 2 단계 예측기 보다 0.36, 혼합형 예측기 보다 0.0l8의 성능을 보였고, 제안된 방식이 기존의 혼합형 방식보다 예측 정확도가 평균 16%가 향상되었고, 하드웨어 비용을 측정한 결과 45%의 감소효과를 얻었다.
본 논문에서 ILP (Instruction Level Parallelism)의 성능향상을 위하여 데이터 값들을 미리 예측하여 병렬로 이슈(issue)하고 수행하는 기존의 데이터 값 예측기(data value predictor)를 비교 분석하여 각 예측기의 예측율을 측정하고, 2-단계 데이터 값 예측기(Two-Level Data Value Predictor)와 혼합형 데이터 값 예측기(Hydrid Data Value Predictor)에서 발생되는 aiasing 을 측정하기 위해 수정된 데이터 값 예측기를 사용하여 측정한 결과 aliasing은 50% 감소하였지만 예측율에는 영향을 미치지 못함과 데이터 값 예측기의 예측율을 측정한 결과 혼합형 데이터 값 예측기의 예측율이 2-단계 데이터 값 예측기와 스트라이드 데이터 값 예측기(Stride Data Value Predictor)에서 평균 5.7%, 최근 값 예측기(Last Data Value Predictor)보다는 평균 38%의 예측 정확도가 높음을 입증하였다.
데이터 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 여러 결과값 예측기의 장점을 이용하여 놓은 성능을 얻을 수 있는 새로운 혼합형 예측 메커니즘을 제안한다. 제안된 혼합형 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절한(Stale) 데이터로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 또한 정적 분류 정보를 사용하여 명령의 반입시 적절한 예측기에 할당함으로써 예상 정확도를 더욱 향상시키며, 하드웨어 비용을 효율적으로 감소시키도록 하였다. 5개의 SPECint 95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 16-이슈 폭에서 모험적 갱신을 사용한 평균 예상 정확도는 73%의 실험 결과가 나왔으며, 정적 분류 정보를 사용하였을 경우 예상 정확도가 88%로 증가된 결과를 얻었다.
데이타 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 여러 결과값 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 혼합형 예측 메커니즘을 제안한다. 제안된 혼합형 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절한(stale) 데이타로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 또한 정적 분류 정보를 사용하여 명령의 반입시 적절한 예측기에 할당함으로써 예상 정확도를 더욱 향상시키며, 하드웨어 비용을 효율적으로 감소시키도록 하였다. 5개의 SPECint 95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 16-이슈 폭에서 모험적 갱신을 사용한 평균 예상 정확도는 73%의 실험 결과가 나왔으며, 정적 분류 정보를 사용하였을 경우 예상 정확도가 88%로 증가된 결과를 얻었다.
최근 여러 논문에서 실 데이터 종속을 제거하기 위하여 결과 값 예상 기법을 제안하였다. 결과 값 예상 기법 중 혼합형 결과 값 예측기는 다양한 패턴을 갖는 명령어를 모두 예측함으로써 높은 예상 정확도를 얻을 수 있지만 하나의 명령어가 여러 개의 예측기 테이블에 중복 저장되어 높은 하드웨어 비용을 요구한다는 단점이 있다. 본 논문에서는 이러한 단점을 극복하기 위하여 프로파일링으로 얻어진 정적 분류 정보를 사용하여, 명령어률 예상 정확도가 높은 예측기에만 할당하여 예상 테이블 크기를 감소 시켰다. 또한 동적으로 적절한 예측기를 선택하도록 함으로써 예상 정확도를 더욱 향상 시켰다. 본 논문에서는 SPECint95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 정적-동적 분류 정보를 모두 사용하였을 경우 87.9%, VHT 크기를 4K로 축소한 경우 87.5%로 비슷한 예상정확도를 얻으면서 예상 테이블의 크기는 50%로 감소하였다. 또한 실행 패턴의 유형 비율에 따라 각 예측기의 VHT를 구성한 경우 예상 테이블 크기를 25%로 줄일 수 있었다.
데이타 종속성은 명령어 수준 병렬성을 향상시키는데 중요한 장애요소가 되고 있으며, 최근 여러 논문에서 데이타 종속을 제거하기 위하여 결과 값을 예상하는 방법이 연구되고 있다. 혼합형 결과 값 예측기는 여러 예측기의 장점을 이용하여 높은 예상 정확도를 얻을 수 있지만, 동일한 명령어가 여러 개의 예측기 테이블에 중복 엔트리를 갖게되어 높은 하드웨어의 비용을 필요로 한다는 단점이 있다. 본 논문에서는 정적 및 동적 분류 정보를 이용하여 높은 성능을 얻을 수 있는 새로운 혼합형 결과 값 예측기를 제안한다. 제안된 예측기는 반입 단계 동안 정적 분류 정보를 사용하여 적절한 예측기에 할당함으로써 테이블 크기를 효과적으로 감소시켰고 예상정확도를 향상시켰다. 또한 제안된 예측기는 동적 분류를 사용하여“Unknown”유형의 명령어에 가장 적절한 예측방법을 선택하도록 하여 예상 정확도를 더욱 향상시켰다. SimpleScaiar/PISA 툴셋과 SPECint95 벤치마크 프로그램에서 시뮬레이션 한 결과, 정적 분류 정보를 사용하였을 경우 평균 예상 정확도가 85.1%, 정적 및 동적 분류 정보를 모두 사용하였을 경우 87.6%의 평균 예상 정확도를 얻을 수 있었다.
본 논문에서는 슈퍼스칼라에서 윈도우 크기에 따른 명령 페치율에 따라 혼합형 값 예측기의 성능을 평가한다. 일반적으로, 명령의 데이터 의존성은 명령의 페치수에 따라 증가된다. 그러므로, 명령 페치율이 증가할 때 값 예측기의 성능이 높다고 본다. 이러한 성능은 명령 페치 메카니즘인 컬랩싱 버퍼와 트레이스 캐쉬로 연구한다. 실험결과는 명령 윈도우 크기에 따른 명령 페치율 증가와 혼합형에서 non-tc 와 tc을 적용한 IPC와 예측률의 값 예측기의 성능 효과를 평가한다.
액체 로켓 엔진용 가스발생기 개발을 위해서는 추진제 혼합비에 따른 연소 가스의 열역학적 물성치 예측이 필수적이다. 본 연구에서는 Lox/Jet A-1 조합의 연료 과농 가스발생기의 실 추진제 연소 시험을 통해 전체 혼합비에 따른 연소 가스의 생성 온도를 계측하였다. 연소실 내 동압 섭동 측정 및 정압 측정 결과를 이용하여 비열비, 가스 상수, 정압 비열과 같은 물성치를 간접적으로 산출해내었다. 본 실험값은 보간 계수를 이용한 예측 결과와 비교해보았을 때 동일한 대표 값을 가지는 것으로 나타나, 보간 계수 예측 방법이 설계 도구로 충분히 적용 가능하다는 것을 확인하였다.
지구 표면의 약 2%에 해당하는 담수에서 육상계 전체가 흡수하는 탄소의 50%가 배출되며, 이는 토양표면에서 배출되는 탄소량에 비해 더 큰 수치로 전 지구적 탄소순환 해석에 중요한 역할을 한다. 특히, 내륙수역과 대기의 경계면에서 $CO_2$ 이동은 전 지구적 탄소순환의 중요한 구성요소로 평가되고 있다. 호수와 저수지 같은 담수 저류시설은 육상에서 기인한 탄소의 운송 및 처리 역할을 한다. 하지만, 저수지에서 온실가스배출량을 평가할 수 있는 명확한 방법론이 부족하며, 전지구 규모 GHGs배출량에 대한 추정에 대한 불확실성이 상당히 큰 상황이다. 본 연구에서는 몬순기후대에 위치한 인공저수지를 대상으로 보다 신뢰도있는 온실가스 배출량 추정을 위해 $CO_2$ NAF 산정하고, 산정에 영향을 미치는 인자들을 분석 하였다. 분석을 위해 $CO_2$ NAF 산정에 필요한 수리 및 수질 인자들을 2017년부터 2018년까지 수집하고, 기초통계량 및 상관분석을 실시하였다. 또한, 주성분분석(PCA) 및 다중선형회귀모델(MLR)과 랜덤포레스트(RF) 기법을 사용해 변수 중요도를 평가하였으며, $CO_2$ NAF 산정 주요인자인 기체교환 계수를 경험적 모델 3종(Cole and Caraco, Crusius, Vachon), 표면갱신형 모델 4종(Heiskanen, Maclntyre, Read, Soloviev)을 비교, 검토하였다. 조사기간 동안 기체교환계수 산정 결과 Crusius 모델 예측값이 평균 $0.342(0.047{\sim}4.323)cm\;hr^{-1}$으로 검토한 모델중 가장 낮은 평균값을 보였으며, Heiskane 모델이 $2.135(0.337{\sim}5.152)cm\;hr^{-1}$으로 가장 큰 평균값을 보였다. 대상 수체는 연주기로 완전혼합되며 수온성층이 약화되는 시기에 저수지 표층 아래에 축적된 탄소가 표층으로 전달되어 높은 수준의 p$CO_2$를 보이며, 수표면에 큰 난류 강도가 작용하는 기간에 대기중으로 배출(pulse emission) 기작이 나타난다. NAF 산정결과 경험적 모델의 NAF값($-1246.0{\sim}6510.3mg-CO_2m^{-2}day^{-1}$)은 표면갱신형 모델 NAF값($-1436.1{\sim}8485.7mg-CO_2m^{-2}day^{-1}$)보다 낮은 수준을 보였으며, 풍속의 함수만을 이용하는 경험적 모델보다 부력 플럭스와 난류 혼합의 영향을 고려하는 Macintyre, Heiskanen모델이 성층 저수지의 $CO_2$ NAF 산정에 적합한 것으로 나타났다. $CO_2$ NAF 산정의 주요인자로 MLR모델은 Tw, EC, pH, Chla, TOC, Alk, RF모델은 EC, DO, TOC가 중요 변수로 평가되었다. PCA 분석결과, 수온이 낮고 성층이 약화되며 pH가 낮은 상태에서 NAF가 큰 것으로 나타났다.
이산화탄소를 포함하는 기체혼합물의 분리를 위해 액체막을 기반으로 하여 관련된 많은 연구가 시도되어 왔다. 폐가스로부터 이산화탄소를 분리하기 위해 본 연구에서는, 흡수제(absorbent)가 흡수(absoption)모듈과 전공조작식 탈착(desorption)모듈간을 계속 순환하는, 보다 개선된 형식의 순환식 중공사 막흡수기(circulatory HFMA)를 새로이 구성하고 분리성능에 관한 기초적인 해석을 하였다. 기-액 물질전달 모델식에 수치해를 적용하여 중공사 막 내부에서의 액상에 대한 농도분포를 정량적으로 예측하였고, 순환하는 흡수제의 유속에 따른 투과플럭스와 선택도의 변화거동을 살펴보았다. $CO_{2}/N_{2}$ 원료혼합기체와 흡수제로서 반응이 없는 순수(pure water)에 대해 계산을 수행하였다. 결과로 흡수제의 유량이 증가함에 따라 투과플럭스는 증가하는 반면에 종전 방식에 비해 졸은 값을 나타낸 선택도의 경우는 점차 감소하였다. 한편 투과플럭스는 진공조작변수인 탈착모듈에서의 기상압력($p_{4}$)에 크게 좌우됨을 보았다. 기존의 평판형 막모듈과의 비교로부터 예상했던 바와 같이 본 연구에서의 중공사 막모듈이 우수한 투과율을 나타냄을 확인할 수 있었다. Circulatory HFMA의 실제 설계를 위한 기초해석이 본 연구가 갖는 의의이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.