• Title/Summary/Keyword: 혼합항법 알고리즘

Search Result 4, Processing Time 0.017 seconds

Hybrid Dual Quaternion Algorithm For Precise Strapdown Inertial Navigation (정밀 스트랩다운 관성항법을 위한 혼합 이체쿼터니언 알고리즘)

  • Shim, Ju-Young;Lee, Han-Sung;Park, Chan-Gook;Yu, Myeong-Jong;Lee, Hyung-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.627-632
    • /
    • 2007
  • Dual quaternion is efficient methodology to express rotation and translation of the vehicle's movements in the unified frame work. Recently, a strapdown inertial navigation algorithm based on dual quaternion was introduced. By comparing and analyzing the classical and dual-quaternion algorithms, this paper proposes a new strapdown inertial navigation algorithm that maintains the accuracy benefit of the dual-quaternion algorithm with considerable computational reduction. Simulation results show the efficiency of the proposed hybrid strapdown navigation algorithm.

A Study on the Characteristic Analysis of the Gyro Sensor and Development of Hybrid Navigation Algorithm for the Car Navigation (차량 항법용 자이로 센서의 특성분석 및 혼합항법 알고리즘 개발에 관한 연구)

  • 김상겸;유환신;김정하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.171-179
    • /
    • 2004
  • Today, the number of vehicle increased rapidly with the development of modem science technology, and it caused serious problems; traffic jam, accident and pollution etc. One of the solve methods these problems it is necessary to develope the vehicle navigation systems and it is already widely used to in field of military etc. Vehicle navigation system can increase the efficiency of traffic flow and offer at a drivers at a best driving conditions. In the vehicle navigation, most important thing is to measure of correct position. There are classifiable as three types. The first is G.P.S., method at artificial satellites which measures the present position and velocity any time, any where in the world at the same time. Secondly, a vehicle can determine its position and path information with a gyroscope and odometer signal, which is called Dead-Reckoning method. Thirdly, hybrid navigation system is the combined of two methods to make utilize the advantage of each navigation system. In the paper, we are analyzed to characteristics at a gyro sensor and introduce at a composition of hybrid navigation system which is combined with the G.P.S., D.R., and map-matching technique. We analyze deeply for the Map-Matching method and explain the coordinate transformation for G.P.S., and the Hybrid navigation algorithm is developed and experimented. Finally, we conclude and comment about our road test results.

Development of the hybrid algorithm for the car navigation system (자동차 항법용 혼합항법 알고리즘 개발)

  • 김상겸;양승규;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1403-1406
    • /
    • 1997
  • Generally, G.P.S(Global Positioning System) is using for the car navigation system but it has some restrictions such as the discontinuity of earth satellites and SA (Selective Availability). Recently, the hybrid navigation system combining with G.P.S and Dead-reckoning are much attractuve for improving the accuracy of a vehicle positioning. G.P.S called satellite navigation system, can measure its position by using satellites. Dead-Reckoning is the self-contained navigatioin system using a wheel sensor for the vehicle velocity and a gyro sensor for the vehicle angular velocity. Some algorithm could be generated for finding the vehicle position and orientation. In this paper, we developed a hybrid algotithm wiht G.P.S DR and Map-Matching.

  • PDF

Attitude Estimation Method through Attitude Comparison for Micro Aerial Vehicle (자세 비교를 통한 초소형 비행체의 자세 추정 기법)

  • 임종남;박찬국
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.63-70
    • /
    • 2006
  • Due to the small size and weight of micro aerial vehicle (MAV), only miniaturized MEMS type sensors are applicable for MAV autonomous flight system. In this paper, we propose a accelerometer and gyro mixing algorithm to improve an attitude performance of MEMS type sensors. The performance of the proposed mixing algorithm is compared with the performance of fuzzy-based mixing algorithm through simulation. The simulation results show that the attitude compensation method through the attitude compensation has better performance than the fuzzy-based mixing method for MAV attitude estimation.