• Title/Summary/Keyword: 혼합토

Search Result 860, Processing Time 0.033 seconds

Mechanical Characteristics of Light-weighted Soils Using Dredged Soils (준설토를 활용한 경량혼합토의 역학적 특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.75-83
    • /
    • 2002
  • This paper is to investigate the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene(EPS), dredged clays and cement by using both uniaxial and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analysed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing stress. In the triaxial compression state, it is found that the compressive strength of LWS containing EPS is independent on the effective confined stress. As the EPS ratio decreases($A_E$<2%) and cement ratio increases($A_c$>2%), the behavior characteristics of triaxial compressive strength-strain relationship is similar to that of cemented soil which decreases rapidly in compressive strength after ultimate compressive strength. For the applications of LWS to ground improvements which require the compressive strength of up to 200kPa, the optimized EPS ratio and initial water content of dredged clay are estimated to be 3~4% and 165~175%, respectively. Also, the ultimate compressive strength under both triaxial test and uniaxial compression states are almost constant for a cement ratio of up to 2% and then critical cement ratio of this LWS shall be 2%.

Numerical Modeling of Soil-Cement based on Discrete Element Method (개별요소법을 이용한 시멘트 혼합토의 수치모델링)

  • Jeong, Sang-Guk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.33-42
    • /
    • 2016
  • Discrete Element Method was conducted for rock and coarse-grained materials in development of granular mechanics and related numerical model due to analyze and apply micromechanical property. And it was verified that the analysis to consider bonding effect was insufficient. In this study, to overcome limits of existing method, it was conducted to analyze difference between indoor test result and bonding effect using $PFC^{3D)}$. For indoor test of mixed soil, uniaxial compression tests by curing time and by cement content were performed. And, DEM to suitable for each condition of indoor test was conducted. In the result of this study, in terms of geotechnics, it was verified that DEM can be used for application as numerical laboratory as well as prediction of micro and macro behavior about bonding effect of mixed soil.

A Study on the Economic Analysis of Box Mechanical Behavior Materials Using LCC Techniques (LCC를 고려한 BOX구조물 뒷채움 재료의 경제성 분석에 관한 연구)

  • Lee, Sang-Hee;Kim, Soo-Yong;Park, Young-Min
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.855-858
    • /
    • 2008
  • The lightweight bubble mixture soil are lightweight soft ground rear, which is used with the material filling. However, comparing with the general soil, it is not valuably useful from domestic. The utilization of the general soil which initial public corporation holds mainly few. The overlay method of general soil decreasing the number of layers increases according to use research study. From the research which consequently, BOX mechanical behavior materials rear executed LCC analyses the general soil which is a material filling and lightweight bubble mixture soil, discussed two kind alternatives and presents the analysis will be able to support the decision-making which is rational from the economics. The expense, which results from the resultant of lightweight bubble mixture soil maintenance, was fewer and was then analyzed with the fact that, will be able to secure an economical efficiency within 6 years.

  • PDF

Economic Analysis of Box Mechanical Behavior Materials Using LCC Analysis (LCC를 고려한 BOX구조물 뒷채움 재료의 경제성 분석)

  • Park, Young-Min;Kim, Soo-Yong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.6
    • /
    • pp.40-47
    • /
    • 2009
  • The lightweight bubble mixture soil is used for soft ground rear-filling material by applying reduced weight on structure. However, comparing with the general soil, it is not applied in domestic because of initial phase cost of construction. General soil, which has lower initial phase cost is usually used for rear-filling, but the use of overlay method of general soil is reduced as the number of layers increases. Especially box structure placed in soft ground or the overlay method when gap near pier rear-filling can be replaced with temporary alternative method, however, it can't be a solution to gap by generation of extra weight of thickness of overlaying. Therefore, execute LCC analysis of two alternative-the general and the lightweight bubble mixture soils, which are rear-filling material of box structure- and present economical analysis in order to make resonable decision from the economics. As a result, although the lightweight bubble mixture soil takes higher initial phase cost than the general soil, it has been analyzed to procure economical efficiency by having less cost of maintenance.

Mechanical Properties of Waste Tire Powder - Added Lightweight Soil (폐타이어 분말을 이용한 혼합경량토의 역학적 특성 연구)

  • Kim, Yun Tae;Kang, Hyo Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.247-253
    • /
    • 2008
  • This paper investigates the mechanical characteristics of waste tire powder-added lightweight soil in which dredged soils, waste tire powder and bottom ash were reused. In this study, 5 groups of soil samples were prepared with varing contents of waste tire powder ranged from 0% to 100% at 25% intervals by the dredged soil weight. The mixed soil samples were subjected to unconfined compression and elastic wave tests to investigate their unconfined compressive strengths and dynamic properties. Test results showed that the unconfined compressive strength and unit weight decreased as the waste tire powder contents increased, but axial strain at failure increased. Also stress-strain relationship of waste tire powder-added lightweight soil showed a ductile behavior rather than a brittle behavior. The result of elastic wave tests indicated that the higher waste tire powder content, the lower elastic wave velocity and the lower shear modulus (G).

Unconfined Compressive Strength of Cemented Sand Reinforced with Short Fibers (단섬유를 사용한 시멘트 혼합토의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Young-Su;Choi, Sun-Gyu;Shin, Shi-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.213-220
    • /
    • 2008
  • A study on cemented sand reinforced with short fibers was carried out to improve its unconfined compressive strength and brittle behavior. Nak-dong River sand was mixed with Portland cement and polyvinyl alcohol (PVA) fibers. A PVA fiber widely used for concrete reinforcement is randomly distributed into cemented sand. Nak-dong River sand, cement and fibers with optimum water content were compacted in 5 layers and then cured for 7 days. The effect of fiber reinforcement rather than cementation was emphasized by using a small amount of cement. Weakly cemented sand with a cement/sand ratio less than 8% was fiber-reinforced with different fiber ratios and tested for unconfined compression tests. The effect of fiber ratio and cement ratio on unconfined compressive strength was investigated. Fiber-reinforced cemented sand with 2% cement ratio showed up to six times strength to non-reinforced cemented sand. Because of ductile behavior of fiber-reinforced specimens, an axial strain at peak stress of specimens with 2% cement ratio increases up to 7% as a fiber ratio increases. The effect of 1% fiber addition into 2% cemented sand on friction angle and cohesion was analyzed separately. When the fiber reinforcement is related to friction angle increase, the 8% of applied stress transferred to 1% fibers within specimens.

Rootzone Profile, Trickle Irrigation System and Turfgrass Species for Roof Turf Garden (옥상녹화에 적합한 지반, 점적 관수 및 잔디 선정)

  • 이재필;한인송;주영규;윤원종;정종일;장진혁;김두환
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.4
    • /
    • pp.155-163
    • /
    • 2003
  • This study was conducted to find out suitable rootzone profile, irrigation system, and turfgrass species for roof turf garden. Treatments of profile with soil amendment were Mixture I: Perlite(PL)60%+Vermiculite(VC)20%+Peatmoss(PM)20%, Mixture II: PL60%+VC 10%+PM20%+Sand(SD)10%, Mixture III: PL60%+VC20%+PM20% and Mixture IV: PL60%+VC10%+PM20%+SD10%+Styrofoam 5cm as a drain layer. To test trickle irrigation for roof garden, intervals of main pipe spacing(50cm, 100cm) and drop hole distance(15, 20, 30, 50 and 100cm)were treated, To select most suitable turfgrass species or mixture, Bermudagrass 'Konwoo', Zoysiagrass 'Konhee' and cool-season grass(Kentucky Bluegrass 80% + Perennial Ryegrass 20%, Tall Fescue 30% + KB50% + PR 20%)were tested. In particle size analysis, the soil amendments Perlite and vermiculite showed very even distribution, however, peatmoss contained mostly coarse particles with fiber over $\Phi$ 4.75mm. Under field moisture condition, vermiculite and peatmoss showed 350% water holding capacity, on the other hand, sand or Perlite showed 115% and 166%, respectively. Total weight of soil profile was 139.2kg/$m^2$ with Styrofoam drain layer without sand, which showed most lightest among treatments. Turf quality also resulted positve with Styrofoam drain layer installation. On trickle irrigation system, the proper interval of main drain pipe spacing and drop hole distance were 50cm and 50cm, respectively, In irrigation frequency, once per a day for 15 minute irrigation with 2 1/hr showed the best results on turf quality. Among turfgrass species or cool season grass mixture, warm season turfgrass fine leaf type zoysiagrass 'Konhee' and Bermudagrass 'Konwoo' showed very acceptable result on all over the treatments of rootzone and irrigation system. To apply cool season grasses for the roof garden, advanced researches may be needed to establish the proper soil amendment, rootzone profile, and irrigation system, Application of Bermudagrass 'Konwoo' for roof turf garden also needs successive tests to overcome winter injuries.

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.378-385
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

  • PDF

Characteristic evaluation of settlement and stiffness of cement-treated soils with the change of fines content under cyclic dynamic loading (세립분 함량 변화에 따른 반복 동하중을 받는 시멘트 혼합토의 침하 및 강성 특성평가)

  • Kim, Dae Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.23-29
    • /
    • 2020
  • The soil structures settle down continuously under cyclic dynamic loading after opening railway lines. This study examined the characteristics of the settlement and stiffness of cement-treated soils with the change in the content of fines under cyclic dynamic loading. Eighteen cases of the test were carried out with the changes in the fines content of soils, cement content, and curing days. Based on the test results, cement-treated soils containing more than 3% of cement could decrease settlement sufficiently even with a high portion of fines under cyclic dynamic loading. In addition, the elastic and plastic settlements could be reduced using 3 to 4% cement to the level of 1/4 and 1/6, respectively. In the viewpoint of stiffness, the resilient modulus of cement-treated soils increases with increasing cement content. Using more than 3% of cement, the 80MPa compaction stiffness standard for the upper subgrade of railways was satisfied, even with 40% of fines content of soils.

A Study on the Material Properties of Admixed Liners for Waste Fill (폐기물 매립장을 위한 혼합 차수재의 물성에 관한 연구)

  • Son, Jun-Ik;Jeong, Ha-Ik;Jang, Yeon-Su
    • Geotechnical Engineering
    • /
    • v.8 no.3
    • /
    • pp.51-60
    • /
    • 1992
  • This paper represents the physical and engineering characteristics of admixed liners obtained from several laboratory tests. Fly ash and weathered granitic soil are selected as primary materials, and bentonite and cement are used as additives. The results show that the maximum dry density reaches peak values at 5% and 25% of bentonite for Seochon and Samchonpo fly ash respectively, and for the weathered granitic soil, the maximum dry density increases continuously as the amount of bentonite increases. The strength of the admixed materials is not sensitive to the bentonite content, although it increases when the additives is cement. The required amount of bentonite to reach the hydraulic conductivity less than 10-7cm/sec are 18, 30, 10% of the sample weights for Seochon and Samchonpo fly ashes and the weathered granitic soil. The amount of additives show significant differences and depend on the grain size and their distributions and the amount of fine content in the primary materials

  • PDF