• Title/Summary/Keyword: 혼합연료

Search Result 1,141, Processing Time 0.025 seconds

Synthesis of Ultrafine LaAlO$_3$ Powders with Good Sinterability by Self-Sustaining Combustion Method Using (Glycine+Urea) Fuel ((Glycine+Urea) 혼합연료를 이요한 자발착화 연소반응법에 의한 우수한 소결성의 초미분체 LaAlO$_3$ 분말 합성)

  • Nam, H.D.;Choi, W.S.;Lee, B.H.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • LaAlO3d single phase used as the butter layer on Si wafer for YBa2Cu3O7-$\delta$ superconductor application were prepared by solid state reaction method and by self-sustaining combustion process. The microstructure and crystallity of synthesiszed LaAlO3 powder studied using scanning electron microscope (SEM) and X-ray diffractometer(XRD), specific surface area and sintering characteristics fo powder were investigated by Brunauer-Emmett-Teller (BET) method and dilatometer respectively. In solid state reaction method, it is difficult to obtain LaAlO3 single phase up to 150$0^{\circ}C$ period. However, in self-sustaining combustion process, it is to easy to do it only $650^{\circ}C$. Based on the results of analysis of dilatometer it is easier to obtain high sintering density (98.87%) in self-sustaining combustion process than in the solid state reaction method. This reason is that the average particle size prepared by self-sustaining combustion process is nano crystal size and has high specific surface are value(56.54 $m^2$/g) compared with that by solid state reaction method. Also, LaAlO3 layer on the Si wafer has been achieved by screen printing and sintering method. Even though the sintering temperature is 130$0^{\circ}C$, the phenomena of silicon out diffusion in LaAlO3/Si interphase are not observed.

  • PDF

Improvement of Low-temperature Fluidity of Biodiesel from Vegetable Oils and Animal Fats Using Urea for Reduction of Total Saturated FAME (요소 이용 포화도 저감을 통한 동.식물성 바이오디젤의 저온유동성 개선)

  • Lee, Yong-Hwa;Kim, Kwang-Soo;Jang, Young-Seok;Shin, Jung-Ah;Lee, Ki-Teak;Choi, In-Hu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • The compositions of saturated and unsaturated fatty acids in biodiesel feedstocks are important factors for biodiesel properties including low-temperature fluidity and oxidative stability. This study was conducted to improve low-temperature fluidity of biodiesel by reducing total saturated FAME (fatty acid methyl ester) in animal fat biodiesel fuels via urea-based fractionation and by mixing plant biodiesel fuels (rapeseed-FAME, waste cooking oil-FAME, soybean-FAME, and camellia-FAME) with enriched-polyunsaturated FAME derived from animal fat biodiesel. Our results showed that the reduction of total saturated FAME in animal fat biodiesel lowered CFPP (Cold Filter Plugging Point) to $-15^{\circ}C$. Mixing plant biodiesel fuels with the enriched-polyunsaturated FAME derived from animal fat biodiesel lowered CFPP of blended biodiesel fuels to $-10{\sim}-18^{\circ}C$.

A Comparative Study on Green Liquor Pre-Pulping Extraction of Mixed Hardwood Chips (혼합 하드우드 칩으로부터 녹액(Green Liqour)선-펄핑추출 공정에 관한 연구)

  • Um, Byung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.561-567
    • /
    • 2013
  • Mixed hardwood chips were pre-pulping extracted with green liquor prior to kraft pulping in order to recover hemicelluloses for use as biofuels. This green liquor solution containing mainly sodium sulfide and sodium carbonate was applied at different alkali charges (expressed as $Na_2O$) of 0, 1, 3, and 5% on dry wood weight. The extractions were performed at $160^{\circ}C$ for residence times ranging from about 1-2 h to determine the effect of extraction severity on composition of the pre-pulping extract. The severity of hemicellulose extraction time and green liquor charge controls the concentration of acetic acid and monosaccharide sugars available for downstream processing, the accumulation of degradation products such as organic acids and furans in the extract. As the alkali charge was increased, the amount of acetate side chains on the hemicelluloses and the dissolved lignin in the extract increased but the carbohydrate and sugars in the extract decreased appreciably. Hot water extraction (0% alkali addition) released the greatest amount of carbohydrates, up to 29.80 g/L measured as component sugars, but resulted in the greatest decrease in pulp yield. Meanwhile, pre-pulping extraction with 3% green liquor increased the pulp yield while greatly reducing the component sugars to 7.08 g/L. Fundamental data obtained in this study will allow selection of optimum hemicellulose extraction conditions for integrating the extraction operation into the Kraft pulping process.

Quality and Combustion Characteristics of Miscanthus Pellet for Bioenergy (바이오에너지용 억새 펠릿의 품질 및 연소 특성)

  • Moon, Youn-Ho;Lee, Ji-Eun;Yu, Gyeong-Dan;Cha, Young-Lok;Song, Yeon-Sang;Lee, Kyeong-Bo
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.286-291
    • /
    • 2016
  • In this study we made fuel pellet from miscanthus biomass and investigated changes of physiological characteristics and electricity consumption of pelletizing process in comparison with fuel pellet made of pine sawdust. We also examined combustion characteristics including ash content and clinker forming ratio with fuel pellet made of mixing with micanthus biomass and lime powder. Bulk density of ground-miscanthus and pine sawdust were $158g\;L^{-1}$ and $187g\;L^{-1}$, respectively. Bulk density of ground miscanthus was lower than that of pine sawdust, but increased to $653g\;L^{-1}$ after pelletizing, which was similar to $656g\;L^{-1}$ of pine sawdust pellet. Moisture content in raw miscanthus and ground miscanthus were 17.0% and 11.8%, respectively. Moisture content in ground miscanthus was similar to that of pine saw dust and decreased to 6.73% after pelletizing, which was 7.7% lower than that of pine sawdust pellet. Although $27kWh\;ton^{-1}$ were required for compaction press that was an additional process in miscanthus pelleitizing, total required electricity was $193kWh\;ton^{-1}$ which was similar to $195kWh\;ton^{-1}$ of pine sawdust pellet pelleitizing. Pellet durability and pelletizing ratio of miscanthus were 98.0% and 99.7%, respectively, which were similar to 98.1% and 99.4% of pine sawdust pellet. When lime mixing ratio increased, ash melting degree and clinker forming ratio of miscanthus pellet increased. While higher heating value and clinker forming ratio of miscanthus pellet decreased.

A Study on the Changes in Heavy Metal Emissions when Using Mixed Fuel in a Thermal Power Plant (화력발전소의 혼합연료 사용에 따른 중금속 배출량 변화 연구)

  • Song, Youngho;Kim, Ok;Park, Sanghyun;Lee, Jinheon
    • Journal of Environmental Health Sciences
    • /
    • v.44 no.1
    • /
    • pp.63-75
    • /
    • 2018
  • Objectives: The aim of this research is to explore the total heavy metals from a coal-fired power plant burning bituminous coal with wood pellets due to the implementation of the Renewable Portfolio Standard policy (RPS, 10% of electricity from renewable energy resources by 2023). Methods: The research was carried out by collecting archival data and using the USEPA's AP-42 & EMEP/EEA compilation of emission factors for use in calculating emissions. The Monte Carlo method was also applied for carrying out the calculations of measurement uncertainty. Results: In this paper, the results are listed as follows. Sb was measured at 110 kg (2015) and calculated as 165 kg (2019) and 201 kg (2023). Cr was measured at 1,597 kg (2015) and calculated as 1,687 kg (2019) and 1,728 kg (2023). Cu was measured at 2,888 kg (2015) and calculated as 3,133 kg (2019) and 3,264 kg (2023). Pb was measured at 2,580 kg (2015) and calculated as 2,831 kg (2019) and 2,969 kg (2023). Mn was measured at 3,011 kg (2015) and calculated as 15,034 kg (2019) and 23,014 kg (2023). Hg was measured at 510 kg (2015) and calculated as 513 kg (2019) and 537 kg (2023). Ni was measured at 1,720 kg (2015) and calculated as 1,895 kg (2019) and 1,991 kg (2023). Zn was measured at 7,054 kg (2015) and calculated as 9,938 kg (2019) and 11,778 kg (2023). Se was measured at 7,988 kg (2015) and calculated as 7,663 kg (2019) and 7,351 kg (2023). Conclusion: This shows that most heavy metals would increase steadily from 2015 to 2023. However, Se would decrease by 7.9%. This analysis was conducted with EMEP/EEA's emission factors due to the limited emission factors in South Korea. Co-firewood pellets in coal-fired power plants cause the emission of heavy metals. For this reason, emission factors at air pollution control facilities would be presented and the replacement of wood pellets would be needed.

다층 PNN-PZT/Ag 복합체의 동시 소성을 위한 압전세라믹스의 저온소결 및 압전특성 평가

  • Lee, Myeong-U;Son, Yong-Ho;Kim, Seong-Jin;Yun, Man-Sun;Ryu, Seong-Rim;Gwon, Sun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.295-295
    • /
    • 2007
  • 기계적 에너지를 전기적 에너지로 변화하는 에너지 변환소자인 압전 세라믹스는 액츄에이터, 변압기, 초음파모터, 초음파 소자 및 각종 센서로 응용되고 있으며, 그 응용분야는 크게 증가하고 있다. 최근 이러한 에너지 변화 소자는 앞으로 도래하는 ubiquitous, 무선 모바일 시대의 휴대용 전자제품, robotics, 항공우주, 자동차, 의료, 건축, MEMS 분야 등의 대체 에너지원으로 응용하기 위한 연구가 진행되고 있다. 특히 인간의 동작 등과 같은 일상적인 동작으로 필요한 전력을 얻을 수 있고, 세라믹 소자를 이용하기 때문에 전자노이즈가 발생되지 않을 뿐 아니라 반영구적으로 사용할 수가 있어서, 기존 이차전지, 연료전지를 대체 또는 보완 할 수 있는 방안도 검토되고 있다. PZT계 세라믹스는 높은 유전상수와 압전특성으로 전자세라믹스분야에서 가장 널리 사용되어지고 있지만 $1200^{\circ}C$이상의 높은 소결온도 때문에 $1000^{\circ}C$ 부근에서 급격히 휘발되는 PbO로 인한 환경오염과 기본조성의 변화로 인한 압전 특성의 저하가 문제시되고 있다. 또한, 적층 세라믹스의 제작 시 구조적 특성상 내부 전극이 도포된 상태에서 동시 소결이 필요한데, 융점이 낮은 Ag전극 대신 값비싼 Pd나 Pt가 다량 함유된 Ag/Pd, Ag/Pt 전극이 사용되고 있어 경제적인 문제가 발생하게 된다. 따라서 순수 Ag 전극을 사용하거나, Ag의 비율이 높은 내부 전극을 사용하기 위해서는 $950^{\circ}C$ 이하에서 소결되는 압전 세라믹스를 개발 하는 것이 필요하다. 따라서 본 연구에서는 압전특성이 우수한 $(Pb_{1-x}Cd_x)\;[(Ni_{1/3}/Nb_{2/3})_{0.25}Zr_{0.35}Ti_{0.4}]O_3$계의 조성을 설계하여, 소결온도를 낮추기 위해서 2단계 하소법을 이용하였다. 분말을 ball milling을 통해 24시간 동안 혼합하였다. 혼합된 분말은 $800^{\circ}C$에서 2시간 동안 하소하였다. 하소한 분말을 72시간 동안 ball milling 하여 최종 분말을 얻었다. 최종 분말에 PVB를 첨가하여 ${\Phi}21$ disk 형태로 성형한 후, $800{\sim}950^{\circ}C$ 소결을 하였다. 최종 분말 및 소결된 시편을 XRD분석을 통하여 상을 확인하였고, SEM을 이용하여 미세조직을 관찰하였다. 전기적 특성을 확인하기 위하여 두께 1mm로 연마한 시편에 Ag 전극을 도포하여 열처리한 후, 분극 처리하였다. 압전특성은 $d_{33}$ 미터로 측정하였고, impedance analyzer를 이용하여 주파수 및 impedance 특성을 측정하였다. 그 결과 $900^{\circ}C$에서 우수한 압전 특성 및 전기적 특성을 확보 할 수 있었다.

  • PDF

High temperature electrical properties of Sr-and Mg-Doped LaAlO3 (억셉터(Sr, Mg)가 첨가된 LaAlO3의 고온 전도 특성)

  • Park, Ji Young;Park, Hee Jung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.187-191
    • /
    • 2019
  • Perovskite-type oxides have consistently attracted considerable attention for their applications in high-temperature electrochemical devices, such as electrolytes and electrodes of solid oxide fuel cells, oxygen permeating membranes and sensors etc. Among them, the electrical conductivity of 10 % Sr and 10 % Mg doped $LaAlO_3$ (LSAM9191) was measured using impedance spectroscopy and 4-probe d.c. method. Below $550^{\circ}C$, the grain boundary resistance mostly determined the overall conductivity; however, it nearly disappeared above $800^{\circ}C$. Using the defect model and curve fitting, the ionic and electronic conductivity contributions were also separated. In the temperature region where the sample resistance is mostly determined by the grain volume property, LSAM9191 was an oxygen ion conductor at low $Po_2$ and a mixed conductor at high $Po_2$. With increasing temperature, the ionic conduction region only slightly increased. Thus, LSAM9191 is a promising material as an oxygen ion conductor at high temperature and in low $Po_2$.

Characteristics of Autoignited Laminar Lifted Flames in Heated Coflow Jets of Carbon Monoxide/Hydrogen Mixtures (일산화탄소/수소 혼합기의 가열된 동축류 제트에서 자발화된 층류 부상화염의 특성)

  • Choi, Byung-Chul;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.6
    • /
    • pp.639-646
    • /
    • 2012
  • The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process.

Characteristics of boil-off-gas partial re-liquefaction systems in LNG ships (LNG선박용 BOG 부분재액화 시스템 특성 연구)

  • Yun, Sang-Kook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.174-179
    • /
    • 2016
  • To protect the ocean environment, the use of liquefied natural gas (LNG) carriers, bunkering ships, and fueled ships is increasing. Recently, Korean shipbuilders have developed and supplied a partial reliquefaction facility for boil-off-gas (BOG). Despite reasonable insulation, heat leakage in vessel storage tanks causes LNG to be continuously evaporated as BOG. This research analyzed the maximum liquid yield rate for various partial reliquefaction systems (PRS) and considered related factors affecting yields. The results showed a liquid yield of 48.7% from an indirect PRS system (heat exchanges between cold flash gas and compressed natural gas), and 41% from a direct PRS system (BOG is mixed with flash gas and discharged from a liquid-vapor separator). The primary factor affecting liquid yield was heat exchanger effectiveness; the exchanger's efficiency and insulation characteristics directly affect the performance of BOG reliquefaction systems.

A Study on Combustion Characteristics and Evaluating of RDFs(Refused Derived Fuels) from Mixture of Petrochemical Wastewater Sludge and Organic Matters (석유화학폐수슬러지와 유기성 폐기물 혼합에 의한 연소특성 및 고형연료 폐기물화 재활용에 관한 연구)

  • Han, Young-Rip;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.237-244
    • /
    • 2015
  • This objectives of research are to figure out combustion characteristics with increasing temperature with petrochemical sludge by adding wasted organic matters which are waste electric wire, anthracite coal and sawdust, and to exam heating value and ignition temperature for using refused derived fuels(RDFs). After analyzing TGA/DTG, petrochemical sludge shows a rapid weight reduction by vaporing of inner moisture after $170^{\circ}C$. Gross weight reduction rate, ignition temperature and combustion rates represent 68.6%, $221.9^{\circ}C$ and 54.1%, respectively. In order to assess the validity of the RDFs, the petrochemical sludge by adding wasted organic matters which are waste electric wire, anthracite coal and waste sawdust. The materials are mixed with 7:3(petrochemical sludge : organic matters)(wt%), and it analyzes after below 10% of moisture content. The ignition temperatures and combustion rates of the waste electric wire, anthracite coal and waste sawdust are $410.6^{\circ}C$, $596.1^{\circ}C$ and $284.1^{\circ}C$, and 85.6%, 30.7% and 88.8% respectively. In heating values, petrochemical sludge is 3,600 kcal/kg. And the heating values of mixed sludge (adding 30% of the waste electric wire, anthracite coal and waste sawdust) each increase up to 4,600 kcal/kg, 4,100 kcal/kg and 4,300 kcal/kg. It improves the ignition temperatures and combustion rates by mixing petrochemical sludge and organic matters. It is considered that the production of RDFs is sufficiently possible by using of petrochemical sludge by mixing wasted organic matters.