• Title/Summary/Keyword: 혼합비율

Search Result 2,481, Processing Time 0.029 seconds

Effect of Fuel Mixing Ratio on Fuel Consumption in a Oil Fired Power Plant (중유화력발전소에서 바이오연료 혼합연소가 연료소비량에 미치는 영향)

  • Hong, Sangpil;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.3
    • /
    • pp.39-45
    • /
    • 2016
  • Each of fuel consumption per hour was measured at the 320 MW and 380 MW generator output while changing mixing ratio of bio fuel oil to 50%, 80% and 100%. Fuel consumption per hour was increased from 11.0% to 20.4% as mixing ratio of bio fuel oil was changed from 50% to 100% at the 320 MW generator output comparing with fuel consumption per hour in case of bunker-C oil single firing. Fuel consumption per hour was also increased from 12.0% to 21.1% as mixing ratio of bio fuel oil was changed from 50% to 100% at the generator output 380 MW. Furthermore, it was confirmed that plant efficiency was decreased as mixing ratio of bio fuel oil was increased from 50% to 100% as a result that plant efficiency was calculated using the measured fuel consumption per hour, the generator output and the gross heating value.

  • PDF

Development of Composite RPF by mixing the sludge with plastic waste (슬러지와 플라스틱 폐기물을 혼합한 복합고형연료 개발)

  • Lee, Jangkun;Kim, Minsun;Roh, Seungmin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.206.2-206.2
    • /
    • 2010
  • 현재 RPF 생산공정에서 생산된 RPF는 약 7,500~8,500kcal/kg 의 높은 열량을 지니고 있다. 이러한 특성으로 연소시 소각로 내부의 온도가 부분적으로 급격히 상승하여 적정온도조절이 어렵고, 로내 장치들의 내구성이 저하되는 등 문제가 발생하고 있다. 또한, RPF에 포함된 비교적 높은 농도의 염소 함량(0.8~1.8% wt)으로 인해 다량의 대기오염물질이 발생되는 단점이 나타나고 있다. 따라서, 이러한 문제점들을 개선하기 위해 RPF의 개질이 필요하며 본 연구에서는 슬러지와 RPF를 혼합하여 열량, 성형성, 염소함량등을 고려하여 최적의 혼합비율을 선정하였다. J하수처리장에서 발생하는 하수슬러지를 이용하여 5, 15, 25, 30, 35%를 RPF 성형공정에 혼합하여 실험하였다. 5% 혼합시 발열량은 약 6,300~6,800kcal/kg, 염소농도는 0.8~1.6%(wt), 15% 혼합시 발열량은 5,500~6,000kcal/kg, 염소농도는 0.7~1.4%(wt), 25% 혼합시 발열량은 5,200~5,900kcal/kg, 염소농도는 0.6~1.1%(wt), 30% 혼합시 발열량은 5,000~5,700kcal/kg, 염소농도는 0.6~1.0%(wt), 35% 혼합시 발열량은 4,800~5,200kcal/kg, 염소농도는 0.4~0.6%(wt)으로 나타났다. 각 혼합비율에서 관찰된 성형성은 5~25% 혼합까지는 성형된 RPF와 유사하게 일정한 크기 및 강도를 유지 할 수 있었으나, 25% 이상 혼합시 분말형태의 가루가 많이 발생되며 강도가 약해져 쉽게 부스러지는 문제점등이 나타났다. 연료의 개질 형태나 성형성등을 고려하였을 때 슬러지 혼합비율이 약 15~25% 정도가 최적 혼합비율인 것으로 나타났다.

  • PDF

Effect of Varietal Mixtures on Growth and Yield of Barley (대맥품종간 혼합파종이 생육 및 수량에 미치는 영향)

  • Cho, C.H.;Chung, T.Y,;Park, M.W.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.2
    • /
    • pp.43-50
    • /
    • 1979
  • In order to determine the effect of mixtures of different barley genotypes, four barley varieties that were similar to the variety Kangbori for earliness, culm length, spike type and spike color were tested. The variety Kangbori was mixed with the 4 other barleys in ratios ranging from 20% to 80% of Kangbori. Tests were conducted at Suweon and Iri. It was difficult to distinguish differences in heading date, maturing date and culm length in the various mixtures. In the mixed populations the degree of lodging was decreased due to the superior straw strength of Kangbori. The mixtures of 20% Kangbori and 80% Bunong and 20% Kangbori and 80% Milyang #6 gave the highest yield increase among the combinations.

  • PDF

Gas Permeation Characteristics of PVC/PS Blend Laminated Membranes Prepared by Water Casting (PVC/PS 혼합 수면 전개 적층막의 기체투과 특성)

  • 남석태;최호상;김병식
    • Membrane Journal
    • /
    • v.3 no.3
    • /
    • pp.108-116
    • /
    • 1993
  • In PVC/PS pelyblend laminated membranes, perrneabilities were increased as increasing the blend ratio of PS and selectivities were increased with increasing the blend ratio of PVC. The gas permeation mechanism was shifted from the combination of Poiseuille and Knudsen flow model to the solution-diffusion model as decreasing the PS blend ratio. The structure of polyblend laminated membranes showed series model, where PS rich phase was formed at air side and PVC rich phase was at water side. The model of permeation in the polyblend laminated membranes also showed series model structure.

  • PDF

Effect of Incorporation Rate of Polyacrylamide Hydrogel on Changes in Physical Properties of Root Media (Polyacrylamide 고흡수성 수지의 혼합 비율이 상토의 물리성에 미치는 영향)

  • Wang, Hyun-Jin;Choi, Jong-Myung;Lee, Jong-Suk
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.182-189
    • /
    • 2005
  • This research was conducted to determine physical properties of four root media, peatmoss + vermiculite (1:1, v/v; PV), peatmoss + composted rice hall (1:1, PR), peatmoss + composted saw-dust (1:1 : PS) and peatmoss + composted pine bark (1:1 PB), as influenced by incorporation rate of Stock-sorb C (STSB). Each root medium containing STSB was packed in 22 cm diameter plastic pot and the physical properties were determined at 5 weeks after packing. As incorporation rate of STSB were elevated, total porosity increased in PV, PS and PB media with statistical differences at $5{\%}$ level. Those also resulted in increase of container capacity in PS and PB media, but statistical differences were not observed in PV and PR media. Elevated incorporation rate of STSB in PV, PS and PB media resulted in increase of air space with statistical differences. Trends in air space of the three root media showed a linear as well as quadratic responses to STSB contents of media. As incorporation rate of STSB increased, more water was retained in four root media at the soil moisture tension of 4.90 kPa, 9.81 kPa, 29.4 kPa and 1.5 MPa. The amount of water retained in PS medium was the highest at the moisture tension at 29.4 kPa and 1.5 MPa followed by PB, PR and PV medium. These results indicated that elevation of incorporation rate of STSB to various root media increased moisture retention capacity, but did not increase the available water holding capacity.

The Study on the Physical and Strength Properties of Lightweight Concrete by Replacement Ratio of Artificial Lightweight Aggregate (인공경량골재 혼합비율에 따른 경량 콘크리트의 물성 및 강도특성에 관한 연구)

  • Choi, Se-Jin;Kim, Do-Bin;Lee, Kyung-Su;Kim, Young-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.313-322
    • /
    • 2019
  • This study is to compare and analyze the physical and strength properties of lightweight concrete using domestic lightweight aggregate by replacement ratio of artificial lightweight fine and coarse aggregate after considering low cement mixture and pre-wetting time. The slump, unit weight, compressive strength and split tensile strength of lightweight concrete with domestic lightweight aggregate were measured. As test results, the slump of lightweight concrete by replacement ratio of lightweight fine aggregate increased as the replacement ratio of lightweight fine aggregate increased. The unit weight of lightweight concrete using 100% of lightweight fine aggregate was about 10.4% lower than that of the lightweight concrete with natural sand. In addition, the unit weight of lightweight concrete by replacement ratio of lightweight coarse aggregate increased with the increase of the ratio of LWG10(5~10mm). The compressive strength of lightweight concrete with lightweight fine and coarse aggregate increased as the replacement ratio of lightweight fine aggregate increased. The compressive strength of lightweight concrete with natural sand and LWG10 was 30 to 31MPa regardless of the replacement ratio of the lightweight coarse aggregate after 7 days.

Effect of the Mixing Ratio of Pot Media on the Germination and Early Growth in Vegetable crops (배양토 조성비율이 채소작물의 발아 및 초기 생장에 미치는 영향)

  • Oh, Tae-Seok;Kim, Chang-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.15 no.3
    • /
    • pp.319-330
    • /
    • 2007
  • This study analyzed physical and chemical characteristics of peat soil to use peat soil as the materials fur pot media and investigated seedling quality of horticultural plants in order to use peat soil as the raw materials fur pot media. The summary of the results is as follows; The chemical characteristics of peat soil, which is main ingredient of pot media are as follows; pH was 4.9, EC was less than $2.0ds{\cdot}m^{-1}$, which interferes the growth of the plant and organic ingredient was 33%. When looking into the germination characteristics of plants according to the mixture of pot media, red pepper showed 54.2% speed of germination and 97% germination rate in peat soil single treatment. Therefore the peatsoil was appropriate for the pot media for red pepper. In case of cucumbers, in the 50 : 50 treatment of main ingredient (peat soil) and auxiliary ingredients (vermiculite, peat moss and perlite) they showed 100% speed of germination and 100% germination rate. Therefore 50 : 50 treatment was appropriate fur the pot media for cucumbers. In case of chinese cabbage, peat soil, perlite and peat moss mixture (50 : 25 : 25) treatment showed the highest speed of germination (77.5%), while the germination rate was a little lower (92.15%) than comparative soil. However, it was appropriate for the pot media for chinese cabbage. In case of watermelon, germination was bad because of the influence of EC when the teat soil ingredient is over 80%. However, in the mixture of peat soil and vermiculite (50:50) treatment, they showed 91.6% speed of germination and 100% germination rate. Therefore it was appropriate for the pot media for watermelon. When looking into the growth of the plants according to the mixture of ingredients, peat soil and perlite (50:50) mixture showed excellent seedling quality for cucumbers, peat soil and perlite (50:50) mixture showed excellent seedling quality and it was proven to be appropriate for the pot media for cucumbers. In case of watermelon, peat soil, peat moss and perlite (80 : 10 : 10) mixture showed excellent seedling quality and it was proven to be appropriate for the pot media for watermelon.

  • PDF

A Study on the Bonding Strength, Reactivity and Thermal Properties of Epoxy Resin Mixed with ESBO (에폭시수지-ESBO 혼용 비율에 따른 목재접착제의 접착력, 반응성 및 열분석에 관한 연구)

  • Choi, Jin Lim;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.36-44
    • /
    • 2007
  • The purpose of this study was to investigate thermal stability, reactivity, and bonding strength of existing epoxy resin mixed with the epoxidized soybean oil (ESBO) in order to use soybean oil economically. In the dry shear test, the marked strengths showed $30.5kgf/cm^2$ at the ratio of ESBO to epoxy resin 9 : 1 and $6.2kgf/cm^2$ at the ratio 8 : 2. The bonding strengths of the others, except mixing ratios 2 : 8 and 1 : 9, exceeded the requirement of Korean plywood standard of $7.0kgf/cm^2$. In the wet shear test, the result was $5.8kgf/cm^2$ at the ratio 9 : 1. There were no thickness swelling and moisture absorption in the water resistance of the film. The value of activation energy, Tg (${\Delta}E$), by DSC analysis showed between $110^{\circ}C$ and $120^{\circ}C$ through all ratios. Epoxy in the epoxy resin fully reacted with the hardener (TETA), but it is difficult to decide that epoxys in the ESBO were reacted directly with the hardener from FT-IR analysis. As the mixing ratio of ESBO increased, the thermal stabilities dropped from TGA analysis. From the comprehensive view on the results of above experiments, it could be confirmed through experiments that the ESBO in the mixed adhesive of epoxy resin/ESBO played a role as an extending agent level of epoxy adhesive, and we were able to know that in order to utilize ESBO as an adhesive, a study should be performed on the condition of hardening, inducible of the hardening reaction.

Growth Characteristics of Several Kinds of Trees According to Mixture Ratio of Used-Rockwool in Pot Nursery (용기 양묘 시 폐암면 혼합 비율에 따른 몇 가지 수종의 생육 특성)

  • Kim, Ho-Cheol;Cha, Seung-Hoon;Choi, Jeong-Ho;Yoo, Sung-Oh;Lee, Soo-Won;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.16 no.2
    • /
    • pp.142-145
    • /
    • 2007
  • Growth characteristics according to mixture ratio of used-rockwool in pot nursery, in Pinus densiflora, Torreya nucifera, Quercus acutissina and Fraxinus mandshurica nursery, was investigated. The used-rockwool on mixture ratio between used-rockwool and control (peatmoss: pearlite=1:1, v/v) were 0%, 30%, 50% and 70%. Flesh weight, dry weight and height of tree, in Pinus densiflora nursery, increased much more in 50% and 70% media but trunk diameter of tree had no difference according to mixture ratio. In Torreya nucifera nursery, flesh weight and height of tree in 70% medium and trunk diameter and numbers of shoot of tree in 50% and 70% media increased. Flesh weight, height and trunk diameter of tree, and chlorophyll (SPAD) and photosynthesis rate, in Quercus acutissina nursery, increased much more in 50% and 70% media, but dry weight of tree had only difference between non-mixed and mixed with rockwool. In Fraxinus mandshurica nursery, flesh weight and photosynthesis rate of tree increased much more in 70% medium, height, trunk diameter and total chlorophyll of tree had difference according to non-mixed and mixed with rockwool or had no only difference according to mixture ratio, respectively.

Physical Properties of Composite Panel Manufactured from Wood Particle and Recycled Polypropylene (목재파티클과 재생폴리프로필렌을 이용한 복합패널 제조 및 물성에 관한 연구)

  • Han, Tae-Hyung;Shin, Rang-Ho;Kwon, Jin-Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.46-54
    • /
    • 2005
  • To make the composite panels of wood particles and recycled plastics, the recycled polypropylene was used. In the composite panels the sizes of wood particles were 1/32", 1/4" and 1/2" mesh, and the composition ratios of the recycled plastics were 10%, 30%, 50% and 70%. The physical and mechanical properties of the composite panels were investigated. As the composition ratio of wood particle increases, the density increases, while it decreases at the same composition ratio because the size of wood particle increases. As the composition ratio of recycled polypropylene increases from 10% to 30%, both thickness swelling and water adsorption significantly decrease. As the composition ratio of recycled polypropylene increases, the modulus of rupture in bending strength increases, but the modulus of elasticity in bending strength decreases. SEM shows that the dissolved recycled polypropylene penetrates into tracheid and pit, and bonds mechanically to other wood particle and matrix to increase the bonding strength and improve the physical and mechanical properties of composite panel.