• Title/Summary/Keyword: 혼합물 총량

Search Result 4, Processing Time 0.024 seconds

A Study on the Optimization of Aircraft Fuselage Structure using Mixture Amount Method & Genetic Algorithm (혼합물 총량법과 유전자 알고리즘을 이용한 항공기 동체 최적화에 관한 연구)

  • 김형래;박찬우
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.28-34
    • /
    • 2006
  • In general engineering problems, the purpose of an optimization is to get optimal design variables. It is the same problem to fix the total amount of the design variables and to judge the optimal mixing proportions of the design variables. That is to say, we can recompose the engineering problems in the concepts of the mixture amount experiments. The goal of mixture amount method is to get the response surfaces of varying both the mixing proportion of component and the total amount of the mixture. The solution of the aircraft fuselage optimization problem is obtained by the mixture amount method and genetic algorithm. In this study, it is shown that the mixture amount method can be utilized for the aircraft structural optimization problem. Also, this method in this study can be applied for the optimization problems over 12 design variables which is impossible for D-optimal design.

An Experimental Study on the Fry Drying of Low-rank Coal with a High Moisture Content (유중 건조법에 의한 고수분 저품위탄 건조 실험)

  • Moon, Seung-Hyun;Kim, Yong-Woo;Ryu, In-Soo;Lee, Seung-Jae
    • Journal of Energy Engineering
    • /
    • v.18 no.4
    • /
    • pp.213-220
    • /
    • 2009
  • The experimental characteristics for fry drying method was investigated using low-rank coal with a high moisture content. Final temperature, mixing ratio between coal and kerosene, content of coal or kerosene, total weight of the mixture and mixing methods were varied to find out the optimum conditions by measuring moisture of coal. Evaporation of the coal moisture was not completed below $120^{\circ}C$ of final temperature. The amount of moisture was not significantly different over $130^{\circ}C$. Coal moisture was easily evaporated by increasing coal content, which showed that the moisture evaporation could be significantly enhanced by the remove of evaporated moisture from kerosene rather than by heat transfer to the coal. High total weight of the mixture resulted in lowering moisture content of coal with long evaporation time. On the other hand, low total weight was difficult to reduce the moisture below a certain level, but could reduce evaporation time. Thus, it can concluded that kerosene content should be lowered to the extent maintaining the mobility of the mixture in order to enhance evaporation. It was also observed that evacuation and mixing by using nitrogen could improve drying of coal.

Translocation of Polychlorinated Biphenyls in Carrot-Soil Systems (Polychlorinated Biphenyl의 작물-토양간 흡수 이행성)

  • Lim, Do-Hyung;Lim, Da-Som;Keum, Young-Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.203-210
    • /
    • 2016
  • Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants, found in the many environments. PCBs exerts various toxicological effects, including endocrine-disrupting activity. Most researches with these toxicants performed with soil matrix with mixtures of congeners, namely Aroclor, while the biological activities have been tested with animals. However, studies with pure congeners are limited. In this study, 5 congeners were synthesized and their fates (bioaccumulation, degradation, kinetics) were studied in carrot-soil system. The soil half-lives of biphenyl, PCB-1, PCB-3, PCB-77, and PCB-126 were 20.2, 16.0, 11.6, 46.5, 198.0 days, respectively. In general, the longer half-lives were observed with the higher hydrophoicity of PCBs. Times, required for maxium accumulation of PCBs in carrot (Tmax) were 10-20 days for most congeners and the concentrations were 0.4-2.6 mg/kg. The concentrations of PCBs in carrot were kept as constant after Tmax, except PCB-126. The concentration ratio between carrot and soil after 90 days of treatment were 1.7, 8.1, 1.9, 1.8, and 5.9 for biphenyl, PCB-1, PCB-3, PCB-77, and PCB-126. Because of the increase of biomass, the total residual amount of PCBs in carrots however, increased till the end of experiment. The portions of PCB-126 in carrot were 1.1% of the soil residues at 90 days after planting.

Removal Characteristic of Arsenic by Sand Media Coated with both Iron-oxide and Manganese-oxide (산화철 및 산화망간이 동시에 코팅된 모래 매질을 이용한 비소오염 제거특성 연구)

  • Kim, Byeong-Kwon;Min, Sang-Yoon;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.473-482
    • /
    • 2009
  • In this study, iron and manganese coated sand (IMCS) was prepared by mixing Joomoonjin sand with solutions having different molar ratio of manganese ($Mn^{2+}$) and iron ($Fe^{3+}$). Mineral type of IMCS was analyzed by X-ray diffraction spectroscopy. Removal efficiency of arsenic through As(III) oxidation and As(V) adsorption by IMCS having different ratio of Mn/Fe was evaluated. The coated amount of total Mn and Fe on all IMCS samples was less than that on sand coated with iron-oxide alone (ICS) or manganese-oxide alone (MCS). The mineral type of the manganese oxide on MCS and iron oxides on ICS were identified as ${\gamma}-MnO_2$ and mixture of goethite and magnetite, respectively. The same mineral type was appeared on IMCS. Removed amount As(V) by IMCS was greatly affected by the content of Fe rather than by the content of Mn. Adsorption of As(V) by IMCS was little affected by the presence of monovalent and divalent electrolytes. However a greatly reduced As(V) adsorption as observed in the presence of trivalent electrolyte such as $PO_4\;^{3-}$. As(III) oxidation efficiency by MCS in the presence of NaCl or $NaNO_3$ was two times greater than that in the presence of $PO_4\;^{3-}$. Meanwhile a greater As(III) oxidation efficiency was observed by IMCS in the presence of $PO_4\;^{3-}$. This was explained by the competitive adsorption between phosphate and arsenate on the surface of IMCS.