• Title/Summary/Keyword: 혼합물 설계

Search Result 196, Processing Time 0.033 seconds

Development of the Permanent Deformation Prediction Model of 19mm Dense Grade Asphalt Mixtures (19mm 밀입도 아스팔트 혼합물의 소성변형 예측 모델 개발)

  • Park, Hee-Mun;Choi, Ji-Young;Park, Seong-Wan
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.1-8
    • /
    • 2005
  • Permanent Deformation is one of the most important load-related pavement distresses in asphalt pavements. The Korean Pavement Design Guide currently being developed adopted the mechanistic-empirical approach and needed the pavement distress prediction models. This study intends to develop the model for prediction of permanent deformation in the asphalt layer and estimate the pavement performance. The objectives of this paper are to figure out the factors affecting the permanent deformation and then develop the permanent deformation prediction model for asphalt mixtures. The repeated triaxial load test was Performed on the 19mm dense graded asphalt mixture with variation of temperature and air void. Results from the laboratory tests showed that temperature and air void in asphalt mixtures have significantly influenced on the factors in prediction model. The permanent deformation prediction model for 19m dense grade asphalt mixtures has been developed using the multiple regression approach and validated the proposed permanent deformation prediction model.

  • PDF

Design of adsorption bed for Compact H2 PSA process (Compact $H_2$ PSA 공정을 위한 흡착탑의 설계)

  • Lee Jang-Jae;Lee Sang-Jin;Moon Jong-Ho;Choi Dae-Ki;Lee Chang-Ha
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.60-68
    • /
    • 2006
  • 소수 station의 수소분리정제를 위한 compact형 PSA 공정을 연구하였다. 기존 PSA 공정의 흡착탑이 차지하는 시스템의 공간을 줄이기 위하여 하나의 흡착탑 안에 다른 흡착탑을 넣어 흡착탑이 차지하는 공간을 최소화하였으며, 흡착탑 간의 열교환이 효과적으로 일어나도록 설계하였다. 수소 혼합물에 대한 활성탄으로 충진된 dual bed에서의 수소 혼합물에 대한 흡/탈착 동특성 실험을 실시하였으며, 시간에 따른 농도와 온도의 변화를 측정하였다. 수소 혼합물로는 $H_2/CO/CH_4/CO_2$ (69:2:3:26 vol.%) 를 사용하였으며, 흡착유량은 7LPM, 흡착압력은 9atm 조건에서 운전하였다. Inner bed와 outer bed의 성능은 각각의 열전달 특성의 차이로 인하여 다르게 나타났으나, 단일탑의 동특성보다는 우수한 성능을 보이고 있었다. 따라서 개발된 dual bed는 적은 부지를 차지하면서도, 보다 우수한 수소 분리 성능을 보일 수 있는 PSA 공정에 응용될 수 있음을 확인하였다.

  • PDF

Multivariate Statistical Analysis and Prediction for the Flash Points of Binary Systems Using Physical Properties of Pure Substances (순수 성분의 물성 자료를 이용한 2성분계 혼합물의 인화점에 대한 다변량 통계 분석 및 예측)

  • Lee, Bom-Sock;Kim, Sung-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2007
  • The multivariate statistical analysis, using the multiple linear regression(MLR), have been applied to analyze and predict the flash points of binary systems. Prediction for the flash points of flammable substances is important for the examination of the fire and explosion hazards in the chemical process design. In this paper, the flash points are predicted by MLR based on the physical properties of pure substances and the experimental flash points data. The results of regression and prediction by MLR are compared with the values calculated by Raoult's law and Van Laar equation.

  • PDF

Field Application of Epoxy Asphalt Mixture for Steel Bridge Deck (에폭시 수지를 이용한 아스팔트 혼합물의 강상판 적용성 평가)

  • Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.2
    • /
    • pp.206-213
    • /
    • 2013
  • The paper presents the field applications and evaluation results of solid epoxy asphalt mixture for steel bridge deck. The material was developed in Japan. The material properties of epoxy asphalt mixture were evaluated through various literature review, and the mix design and mixture evaluation were conducted. According to the research results, the application of epoxy asphalt mixture for steel bridge deck was noticeable compare to the conventional ones. In addition, results from 3D finite element analysis showed that the performance of epoxy asphalt mixture for steel bridge deck was proved to be satisfied. As a result, a pilot test section was constructed using the epoxy asphalt mixture produced from conventional batch plant system. BPT test results showed that friction of the epoxy asphalt mixture was higher than the requirements compare to that of the conventional one.

Evaluation of Rutting and Deformation Strength Properties of Polymer Modified SMA Mixtures (개질재 첨가에 따른 SMA 혼합물의 소성변형 및 변형강도 특성 연구)

  • Kim, Hyun-H.;Choi, Young-R.;Kim, Kwang-W.;Doh, Young-S.
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.25-31
    • /
    • 2009
  • In general, it is well known fact that the stone mastic asphalt (SMA) pavement has a high resistance against rutting. However, performance of SMA is not well measured by general method used in the laboratory. The objective of this study is to investigate an applicability of deformation strength ($S_D$) for performance estimation of SMA, and to find out the correlation between rut depth and dynamic stability, and $S_D$ of SMA. This study carried out wheel tracking test and Kim-test with optimum asphalt content (OAC) determined by mix design. The results indicated that the $S_D$ of SMA was very poorer than those of dense-graded asphalt mixtures. $S_D$ showed similar WT dynamic stability and rut-depth level. It was found that Kim-test was not reflected higher rutting resistance of SMA like as indirect tensile strength (ITS) test and Marshall stability test. Also, it was revealed that dynamic stability and rut-depth of WT had some problems to estimate rutting resistance of SMA mixtures.

  • PDF

Evaluation of the Mechanical Characteristics of the Large Stone Asphalt Mixtures (대입경 혼합물의 역학적 특성 평가)

  • Park, Tae-Sun;Kim, Ju-Won;Kim, Yong-Ju
    • International Journal of Highway Engineering
    • /
    • v.2 no.2
    • /
    • pp.129-138
    • /
    • 2000
  • This study presents the mechanical characteristics, such as the permanent deformation and the crack, of the large stone asphalt mixtures. The large stone mixture was studied by Kandhal at NCAT(National Center for Asphalt Technology) in 1989. Japan and Arabian countries adopted the large stone mixture for the pavement construction. The experience and the study results showed that the interlocking of the aggregate system of the large stone mixtures is stable and less dependent on the binder characteristics in high temperature. These properties are known as the rutting resistant parameters. However, the mechanical test results should be supported to prove the benefits of the large stone mixtures. The creep test, resilient modulus tests on three different temperature, wheel tracking test and ravelling tests were conducted to evaluate the performance of the large stone mixtures in this study. The test results were compared with the conventional mixtures and modified asphalt concrete mixtures. The large stone mixtures showed better rutting resistance performance.

  • PDF

Laboratory Performance Evaluation of High Modulus Asphalt Mixes for Long-Life Asphalt Pavements (장수명 아스팔트 포장용 고강성 혼합물의 실내 공용성 평가)

  • Kang, Min Gyun;Lee, Jung Hun;Lee, Hyun Jong;Choi, Ji Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.73-79
    • /
    • 2006
  • A major purpose of this study is to develop high modulus asphalt mixtures for perpetual asphalt pavements which can save maintenance cost by increasing the design and performance periods of the pavements. Various physical and mechanical laboratory tests are performed for the high modulus asphalt binder developed in this study. The test results show that the properties of the high modulus binder are similar to those of the French high modulus binders. In addition to the binder tests, various performance tests are conducted for the high modulus and conventional mixtures. The dynamic modulus test results indicate that the dynamic modulus values of the high modulus mixtures are higher than those of the conventional mixtures by 10~15% at $5^{\circ}C$, 20~25% at $15^{\circ}C$ and 100% at $30^{\circ}C$. It is observed from the performance tests that the high modulus mixtures yield better fatigue, rutting and moisture damage performance than the conventional mixtures.

Evaluation of Laboratory Performance Characteristics of Fiber-Reinforced Asphalt Concrete (섬유활용 아스팔트 콘크리트의 실험적 공용특성평가)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.61-72
    • /
    • 2002
  • The optimum fiber and asphalt binder contents were decided on the base of the Mashall mix design method. To compare the mechanical characteristics between the conventional(dense-graded 20) and the fiber-reinforced mixtures, indirect tension tests were conducted under three temperatures(5, 20, 60$^{\circ}C$). In particular, the wheel tracking tests were performed to evaluate the rutting resistances of the mixtures. Test results showed that the indirect tensile strength of fiber-reinforced asphalt concrete was higher than that of conventional one. The toughness of fiber-reinforced mixture was 1.27 to 1.97 times higher than that of conventional one, depending upon the temperature. In addition, the results of wheel tracking tests and the retained indirect splitting tension tests conducted at $60^{\circ}C$ revealed that the resistance to permanent deformation of fiber-reinforced mixture was stronger than that of the conventional one.