• Title/Summary/Keyword: 혼합면 모델

Search Result 97, Processing Time 0.02 seconds

Modeling of the Velocity of the Ceiling Jet Front (연기선단의 전파속도 모델에 관한 연구)

  • 김명배;한용식
    • Fire Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.91-95
    • /
    • 2001
  • Decays of the ceiling jet front velocity under a circular ceiling are investigated. To simulate the ceiling jet in fires He and $N_2$gas were injected from a nozzle to the center of the ceiling. The jet fronts in the form of turbulent eddies were traced by a high-speed camera system. The instantaneous locations of the front were obtained from visual readings of visualized front, and the radial velocity was calculated from the information of the time and the location with respect to the front. The similarity and dimensional analysis were also carried out to reveal the relationship between the velocity decay and the radial distance. It was shown that the radial velocity of the front was inversely proportional to the radial distance in the fully developed region from the experimental results and the theoretical analysis.

  • PDF

A Simple Constitutive Model for Soil Liquefaction Analysis (액상화 해석을 위한 간단한 구성모델)

  • Park Sung-Sik;Kim Young-Su;Byrne P. M;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.27-35
    • /
    • 2005
  • Several damages due to large displacement caused by liquefaction have been reported increasingly. Numerical procedures based on effective stress analysis are therefore necessary to predict liquefaction-induced deformation. In this paper, the fully coupled effective stress model called UBCSAND is proposed to simulate pore pressure rise due to earthquake or repeated loadings. The proposed model is a modification of the simple perfect elasto-plactic Mohr-Coulomb model, and can simulate a continuous yielding by mobilizing friction and dilation angles below failure state. Yield function is defined as the ratio of shear stress to mean normal stress. It is radial lines on stress space and has the same shape of Mohr-Columob failure envelope. Plastic hardening is based on an isotropic and kinematic hardening rule. The proposed model always causes plastic deformation during loading and reloading but it predicts elastic unloading. It is verified by capturing direct simple shear tests on loose Fraser River sand.

Combustion Characteristics of Hypersonic SCRamjet Engine (극초음속 스크램제트 엔진의 연소특성)

  • 원수희;정은주;정인석;최정열
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of model SCRamjet engine combustor, where a hydrogen jet injected into a supersonic cross flow and in a cavity Combustion phenomena in a model SCRamjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, was observed around separation region of upstream of the normal injector and inside of cavity. The results show that the separation region and cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs in the separation-freestream and cavity-freestream interface.

Advanced Finite Element Technology for Fracture Mechanics Analysis of Cracked Shells (균열된 쉘의 파괴역학해석을 위한 선진유한요소기법)

  • 우광성
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.77-85
    • /
    • 1991
  • A new finite element technology based on the p-version of E.F.M. is discussed with reference to its potential for application to stress intensity factor computations in linear elastic fracture mechanics, especially cracked cylindrical shells. It is shown that the p-version model is far better suited for computing the stress intensity factors than the conventional h-version models with the help of three test problems. The main advantage of this technology is that the accuracy of approximation can be established without mesh refinement or the use of special procedures such as crack-tip element and mixed variational approach.

  • PDF

Recent trends in applied researches of CFD for a new engine design (전산 유체 해법의 엔진 설계 응용 연구의 최근 동향)

  • 허강열
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.1-8
    • /
    • 1995
  • 전산유체 해법의 내연기관 3차원 해석에 대한 최근 연구 동향에 대해 소개하였다. 난류유동 해석은 아직 정확성과 신뢰도 면에서 많은 연구가 필요하지만 현재의 상태에서도 직관, 경험, 실험 측정에 의해 파악하기 어렵거나 많은 비용과 시간이 요구되는 부분을 보완해 줄 수 있는 도구로서 인정받고 있다. 연소해석 부분은 현상 자체가 유동, 연소, 분무, 열전달등이 복합적으로 작용하는 어려운 문제로서 공학계산의 가장 첨단 분야 중의 하나라 할 수 있다. 현재 관련 모델로서 스파크 점화기관의 점화 및 화염전파, 배기가스 생성 과정과 디젤기관의 압축착화, 예혼합 및 확산 연소, 매연 등의 생성과정에 대한 모델 개발과 검증이 활발히 이루어지고 있다. 일부 발표된 논문 결과들은 이와 같은 방법이 엔진의 주요 연소 특성을 재현하는데에 성공적으로 활용될 수 있음을 보여주고 있다.

  • PDF

Centrifugal Modelling on the Displacement Mode of Unpropped Diaphragm Wall with Surcharge (과재하중이 있는 Unpropped Diaphragm Wall의 변위양상에 관한 원심모델링)

  • 허열;이처근;안광국
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.135-145
    • /
    • 2004
  • In this study, the behavior of unpropped diaphragm walls on decomposed granite soil was investigated through centrifugal and numerical modelling. Centrifuge model tests were performed by changing the interval distance of surcharge. Excavation was simulated during the centrifuge tests by operating a solenoid valve that allowed the zinc chloride solution to drain from the excavation. In these tests, ground deformation, wall displacement and bending moment induced by excavation were measured. FLAC program which can be able to apply far most geotechnical problems was used in the numerical analysis. In numerical simulation, Mohr-Coulomb model fur the ground model, an elastic model for diaphragm wall were used for two dimensional plane strain condition. From the results of model tests, failure surface was straight line type, the ground of retained side inside failure line had downward displacement to the direction of the wall, and finally the failure was made by the rotation of the wall. The angle of failure line was about 67 ∼ 74$^{\circ}$, greater than calculated value. The locations of the maximum ground settlement obtained from model tests and analysis results are in good agreements. The displacement of wall and the change of the embedment depth is likely to have linear relationship.

Fresh Water Flume Analysis Using an Unstructured Grid Ocean Circulation Model (비정규격자계 해양순환 모델을 이용한 하구에서의 담수 유출분석)

  • Hwang, Jin-Hwan;Park, Young-Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.227-234
    • /
    • 2009
  • Using a finite volume ocean circulation model based on an unstructured grid (FVCOM), we studied the structure of a fresh water bulge that influences on the Region Of Freshwater Influence. Fresh water discharged a river forms a coastal boundary current to the righthand side and a cyclonically circulation freshwater bulge that grows with time. In the middle of the bulge, vertical motions bring fresh water to the bottom. When tidal motions are included, the bulge disappears while the boundary currents becomes wider. Through a simple comparison of areas occupied low salinity water we quantified vertical and horizontal mixing due to the tide and showed that the tidal motion enhances the vertical mixing. During the first few tidal cycles right after the onset of the river discharge, due to tidal excursion the horizontal mixing becomes stronger. The vertical mixing by the tide mixes the fresh water After a certain time the water around the river mouth is well mixed and the horizontal excursion of the fresh water near the river mouth does not have much effect on the horizontal mixing. When there is no tidal motion horizontal mixing is mainly by the inertial instability at the surface and the horizontal mixing becomes stronger over time.

  • PDF

A Study on the Possibility of Applying Blended teaming to Design Education - Focused on the survey of learners′ satisfaction - (디자인교육에서 혼합형 수업(Blended learning) 적용 가능성 - 학습자 만족도 조사를 중심으로 -)

  • 백수희
    • Archives of design research
    • /
    • v.16 no.4
    • /
    • pp.443-452
    • /
    • 2003
  • This study is to find out the possibility of applying the Blended Learning which combines the advantage of face-to-face classroom instruction and e-Learning to design education. This Blended Loaming Model has five steps such as 'prepare, teach, show, interact, and collaborate'. It is designed by the learning decision points (performance outcomes, content stability and structure, audience size, and so on) and the characteristics of delivery methods(asynchronous, synchronous). This research is based on the learners' satisfaction data of each step. The number of the participants is 27 and a questionnaire with 21 items is administered. Ten items of them are designed with 5-point Likert scales and the rest of them ask learners describe the reason of their selection. The result show that learners are satisfied with the blended learning than the off-line classroom. It is expected that the blended learning can be a substitute of the off-line classroom for the effectiveness of design education.

  • PDF

Assessment of Structural Modeling Refinements on Aeroelastic Stability of Composite Hingeless Rotor Blades (구조 모델링 특성에 따른 복합재료 무힌지 로터의 공력 탄성학적 안정성 연구)

  • Park, Il-Ju;Jung, Sung-Nam;Kim, Chang-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.163-170
    • /
    • 2008
  • The aeroelastic stability analysis of a soft-in-plane, composite hingeless rotor blade in hover and in forward flight has been performed by combining the mixed beam method and the aeroelastic analysis system that is based on a moderate deflection beam approach. The aerodynamic forces and moments acting on the blade are obtained using the Leishman-Beddoes unsteady aerodynamic model. Hamilton's principle is used to derive the governing equations of composite helicopter blades undergoing extension, lag and flap bending, and torsion deflections. The influence of key structural modeling issues on the aeroelastic stability behavior of helicopter blades is studied. The issues include the shell wall thickness, elastic couplings and the correct treatment of constitutive assumptions in the section wall of the blade. It is found that the structural modeling effects are largely dependent on the layup geometries adopted in the section of the blade and these affect on the stability behavior in a large scale.

An Experimental Study on the Flashback and Re-ignition Structure with a V-gutter type Flameholder (V-gutter형 보염기에서 발생하는 화염의 역화 및 재점화 구조에 관한 실험적 연구)

  • Jeong, Chan-Yeong;Kim, Tae-Sung;Song, Jin-Kwan;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.603-607
    • /
    • 2011
  • Structure of flashback and reignition occurring near flameholder was experimentally investigated in a model combustor with V-gutter flameholder. The combustor has a long duct shape with cross section of $40{\times}40mm$ and City Nature Gas(CNG) were used as fuel. Measurements of chemiluminescence with high speed camera was used for visualization of flame structure. In the lean case, flashback distance depend on equivalent ratio. New flame occurred at the front tip of flameholder when flashback. Flashback flame moved toward downstream direction of combustor because mixture flow velocity had increased, and then re-ignition was caused by entering flow into recirculation zone that is formed behind the flameholder.

  • PDF