• 제목/요약/키워드: 혼합냉매

검색결과 156건 처리시간 0.027초

고효율 혼합 냉매 천연 가스 액화 공정에 대한 고찰 (Analysis of high efficiency natural gas liquefaction cycle with mixed refrigerant)

  • 백승환;황규완;정상권
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.181-185
    • /
    • 2008
  • The new concept for liquefaction of natural gas has been designed and simulated in this paper. Conventional liquefaction cycles are usually composed with Joule-Thomson valves at lower temperature refrigerant cycle. The new concept of natural gas liquefaction is discussed. The main difference with conventional liquefaction process is the presence of the turbine at low temperature of MR (mixed refrigerant) cycle. The turbine acts as expander but also as an energy generator. This generated energy is provided to the compressor which consumes energy to pressurize refrigerants. The composition of the mixed refrigerant is investigated in this study. Components of the refrigerant are methane, propane and nitrogen. Composition for new process is traced with Aspen HYSYS software. LNG heat exchangers are analyzed for the new process. Heating and cooling curves in heat exchangers were also analyzed.

  • PDF

탄화수소계(R290/R600a) 혼합냉매를 적용한 왕복동형 압축기 성능 해석 (Performance analysis of the reciprocating compressor with hydrocarbon refrigerant mixtures, R290/R600a)

  • 김종헌;정연구;박경우;박희용
    • 설비공학논문집
    • /
    • 제11권2호
    • /
    • pp.270-280
    • /
    • 1999
  • A performance analysis simulation program that can be applied to a hermetic reciprocating compressor with various refrigerants has been developed. For the numerical analysis, the passage of refrigerant in compressor is subdivided into control volumes. Instead of the ideal gas assumption, CSD equation of state is applied to calculate the thermodynamic properties of refrigerants. To verify the validity of developed program, the result has been compared with the experimental data served by the compressor supplier. The performance of each refrigerant and the possibility of direct application are estimated by applying R12, 134a, R290, R600a and R290/R600a mixture to an existing compressor. Also, parametric study for various crank rotating speeds and the mole fractions of refrigerant has been performed.

  • PDF

수평관내 3성분 혼합냉매의 강제대류비등 열전달 (Forced convective boiling heat transfer for a ternary refrigerant mixture inside a horizontal tube)

  • 오종택
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.912-920
    • /
    • 1999
  • The forced convective boiling heat transfer coefficients of R-407C were measured inside a horizontal tube 6.0mm I.D. and 4.0m long. The heat transfer coefficients increased according to an increase in heat flux at constant mass flux. Because nucleation was completely suppressed in the two-phase flow region with high quality, heat transfer coefficients in forced convective evaporation were higher than those in nucleate boiling region. Average heat transfer coefficients of R-407C were about 30 percent lower than the pure refrigerant correlation, due to mass transfer resistance at the gas-liquid interface. However, the total experimental data shows an agreement with the predicted data for ternary refrigerant mixtures with a mean deviation of 30%.

  • PDF

이산화탄소와 R134a의 혼합냉매를 이용한 오토캐스케이드 냉동시스템의 성능 (Performance of autocascade refrigeration system using carbon dioxide and R134a)

  • 박수남;김민수
    • 설비공학논문집
    • /
    • 제11권6호
    • /
    • pp.880-890
    • /
    • 1999
  • The purpose of this study is to investigate the performance of an autocascade refrigeration system using the refrigerant miktures of R744 (carbon dioxide) and R134a (1,1,1,2-tetrafluoroethane) as working fluids by simulation and experiment. Cycle simulation using a constant UA model in heat exchangers has been performed for R744/134a mixtures of the compositions in the range of from 10/90 to 30/70 by weight percentage. Variations of mass flow rate of refrigerant, compressor work, refrigeration capacity and COP with respect to mass fraction of R744/134a mixture were presented. Performance test has been executed in an autocascade refrigeration system by varying secondary fluid temperatures at evaporator and condenser inlets. Experimental results show similar trend with those from the simulation.

  • PDF

혼합냉매를 이용한 천연가스 액화공정의 제어변수 분석 (Analysis of the Control Variables for Natural Gas Liquefied Process Using Mixed Refrigerant)

  • 이재용;김문현;박찬국
    • 한국가스학회지
    • /
    • 제17권4호
    • /
    • pp.51-57
    • /
    • 2013
  • 천연가스 액화 공정은 상온의 천연가스를 상압 $-160^{\circ}C$ 이하로 냉각해서 액화시키는 공정으로, 안정된 LNG 생산을 위해서는 최적의 제어 전략이 필요하다. 제어 전략을 수립할 때 가장 중요한 작업 중 하나가 공정의 분석인데, 조절 변수의 변화에 따른 제어 변수의 변화를 파악하는 것이다. 본 논문에서는 C3MR(Propane Pre-cooled Mixed Refrigerant) 공정으로 BSU(Bench Scale Unit)를 제작하여 천연가스 액화 공정을 실험하였다. 각 조절변수의 조작에 따른 유량의 변화가 공정에 미치는 영향을 알아보기 위해서 냉매의 유량변화에 따른 냉매 온도 변화 및 천연가스의 온도 변화를 분석하였고, 천연가스 자체의 유량 변화에 따른 냉매의 온도 변화를 분석함으로써 3개의 조절 변수와 공정의 제어변수들과의 관계를 알아보았다. 각 제어변수들은 독립적인 요소들이 아닌 서로 연관되어 유기적인 움직임을 보였으나, 특정 조절 변수의 변화에 따라 큰 반응을 보이는 제어 변수를 확인 할 수 있었다.

탄화수소 냉매의 수평 원관내 응축열전달 특성 (Condensing heat transfer characteristics of hydrocarbon refrigerants in a horizontal tube)

  • 장영수;김민수;노승탁
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1656-1667
    • /
    • 1997
  • Condensing heat transfer characteristics of hydrocarbon refrigerants are experimentally investigated. Single component hydrocarbon refrigerants (propane, isobutane, butane and propylene) and binary mixtures of propane/isobutane and propane/butane are considered as test fluids. Local condensing heat transfer coefficients of selected refrigerants are obtained from overall conductance measurement. Average heat transfer coefficients at different mass fluxes and heat transfer rates are shown and compared with those of R22. Pure hydrocarbon refrigerants have higher values of heat transfer coefficient than R22. It is also found that there is a heat transfer degradation for hydrocarbon mixtures due to composition variation during condensation. Measured condensing heat transfer coefficients are compared with predicted values by available correlations. An empirical correlation for pure and mixed hydrocarbon is developed, and it shows good agreement with experimental data.

수평 전열관내 비공비 혼합냉매 R134a/R123의 강제대류비등 열전달에 관한 연구 (A Study on Forced Convective Boiling Heat Transfer of Non-Azeotropic Refrigerant Mixture R134a/R123 Inside Horizontal Smooth Tube)

  • 임태우;한규일
    • 대한기계학회논문집B
    • /
    • 제27권3호
    • /
    • pp.381-388
    • /
    • 2003
  • An experimental study was carried out to measure the heat transfer coefficient in flow boiling to mixtures of HFC-l34a and HCFC-123 in a uniformly heated horizontal tube. Tests were run at a pressure of 0.6 MPa and in the ranges of heat flux 1-50 kw/$m^2$, vapor quality 0-100 % and mass velocity 150-600 kg/$m^2$s. Heat transfer coefficients of mixture were less than the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant. Measured data of heat transfer are compared to a few available correlations proposed for mixtures. The correlation of Jung et. al. satisfactorily predicted the present data, but the data in lower quality was overpredicted and underpredicted the high quality data. The correlation of Kandlikar considerably underpredicted most of the data. and showed the mean deviation of 35.1%.

극저온 Joule-Thomson 냉동기용 혼합냉매 결정에 관한 연구 (A Study on the Determination of Mixed Refrigerant for the Joule-Thomson Cryocooler)

  • 이경수;장기태;정상권
    • 설비공학논문집
    • /
    • 제12권10호
    • /
    • pp.901-907
    • /
    • 2000
  • The conceptual determination of mixed-refrigerant (MR) for a closed Joule-Thomson cryocooler is described in this paper. The thermodynamic cycle design was mainly considered to develop a cryocooler by using a compressor of domestic air-conditioning unit. The target cooling performance of the designed cryocooler is 10 W around 70 K with less than 5 kJ/kg enthalpy rise. The systematic approach of choosing a proper refrigerant among 20 different kinds of mixture for such cryogenic temperature was introduced in detail. The main components of the cryocooler are compressor, evaporator, oil separator, after-cooler, counterflow heat exchanger, and J-T expansion device. Due to the limitation of the compressor operation range, the temperature after the compression was limited below $117^{\circ}C$ (390 K) and the temperature before compression was restricted above $5^{\circ}C$ (278 K). 20 atm of discharging pressure (high pressure) and less than 3 atm suction pressure (low pressure) were the design conditions. The inlet temperature of a counterflow heat exchanger in the high Pressure side was about 300 K. The proper composition of the mixed refrigerant for the designed J-T cryocooler is 15% mol of$ N_2, 30% mol of $CH_4,\; 30% mol\; of C^2H^ 6,\; 10%\; mol\; of\; C_3H_8\; and \;15%\; mol\; of\; i-C_4H_10$.

  • PDF

2중 관형 열교환기내 비공비혼합냉매 R-22+R134a의 응축열전달 특성에 관한 연구 (Condensation Heat Transfer Characteristics of Non-Azeotropic Refrigerant Mixture(NARMs) Inside Double Pipe Heat Exchangers)

  • 노건상;오후규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.91-100
    • /
    • 1996
  • Experimental results for forced convection condensation of non-azeotropic refrigerant mixtures inside a horizontal smooth tube are presented. The mixtures of R-22+R-134a and pure refrigerants R-22 and R-134a are used as the test fluids and a double pipe heat exchanger of 7.5mm ID and 4800mm long inside tube is used. The range of parameters are 100-300kg/h of mass flow rate, 0-1.0 of quality, and 0, 33, 50, 67, and 100 weight percent of R-22 mass fraction in the mixtures. The heat flux, vapor pressure, vapor temperature and tube wall temperature were measured. Using the data, the local and average heat transfer coefficients for the condensation have been obtained. In the same given experimental conditions, the liquid heat transfer coefficients for NARMs were considerally lower than that of the pure refrigerant of R-22 and R-134a. Local heat transfer characteristics for NARMs were different from pure refrigerant R-22 and R-134a. In some regions, local heat transfer coefficients for NARMs were increased in the following order ; Bottom$\rightarrow$Top$\rightarrow$Side. The condensation heat transfer coefficients for NARMs increased with mass velocity, heat flux, and quality, but were considerably lower than that of pure refigerant R-22 and R-134a.

  • PDF