• Title/Summary/Keyword: 혼합기 유동

Search Result 304, Processing Time 0.024 seconds

액체 램제트 엔진의 3차원 분무 및 연소 반응 해석

  • 오대환;임상규;손창현;이충원
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.11-11
    • /
    • 1999
  • 액체 램제트 연소기는 흡입공기와 분무, 혼합 그리고 이에 따른 연소 등 일련의 과정에 따라 다수의 복잡한 현상들이 상호 밀접하게 관련되어 있다. 본 연구에서는 액체 램제트 연소기내의 유동특성을 파악하기 위해서 2차원 및 3차원 연소기 형상에 대해서 수치적 실험을 수행하였으며, 격자구성은 연소기에 공기를 공급하고 연료를 분무하는 공기 유입관 영역과 연소실 영역, 그리고 출구 대기 영역으로 나누어 독자적으로 격자를 생성시켰다. 2차원과 3차원 유동해석을 비교하였고 분무모델의 적용에 따른 연소특성 및 분사위치에 따른 연소특성을 비교하였다. 유동해석 결과 2차원과 3차원의 유동특성은 달랐으며, 분무모델을 적용해야 정확한 연소 유동 현상을 예측할 수 있음을 알 수 있었다. 그리고 유입관의 안쪽에 연료의 분사위치를 준 경우가 연소의 안정화에 필요한 재순환영역으로의 연료의 혼합이 잘 되어 유입관 바깥쪽에 연료를 분사시키는 것보다 좋은 분사위치임을 알 수 있었다.

  • PDF

Flow Characteristics of Injected Concentrates in Spray Booms (주입식 붐 방제기의 농약 혼합 유동특성)

  • 구영모;스티븐영;데니스쿨만
    • Journal of Biosystems Engineering
    • /
    • v.21 no.2
    • /
    • pp.146-154
    • /
    • 1996
  • 농약의 직주입 혼합방식은 작업자의 안전에 기여하며 남은 농약은 용기와 함께 수거되어 재사용 되므로 환경보전 및 경제적 이점이 있다. 그러나 주입식 방제기의 분관내 농약혼합액이 노즐에 이르는 시간까지의 유동특성인 지연시간은 농약 살포량에 오차를 유발한다. 본 연구는 이 지연시간이 미치는 실제 살포오차의 정도를 파악하려 시뮬레이션을 행하였다. 시뮬레이션의 결과에 의하면 오차는 상당히 심각한 것으로 판단되었으며 지연시간을 단축하려는 여러 방법을 검토하였다. 분관의 직경을 줄여 유동속도를 빠르게 하거나, 혼입 농약의 양을 일정하게 유지하며 방제속도를 가능한 목표속도에 맞추는 방법 등은 약간의 오차를 줄일 수 있을 뿐이었고, 농약을 각 노즐에 주입함으로써 오차를 최소화할 수 있으나 미소계략의 문제를 내포하였다. 따라서 농도의 변화에 따른 지연시간을 없앤 직주입 총유량 제어방식을 통하여 노즐 배출유량을 방제속도의 변이에 따라 보상하며 비례적으로 농약을 주입하여 농도를 일정하게 유지할 수 있을 것으로 판단된다.

  • PDF

Reactive Flow Fields Analysis of End-Bunting Combustor with Different Impinging Type Injectors (End-Burning 연소기의 충돌형 산화제 주입기 형상 변화에 따른 연소유동장 해석)

  • Min, Moon-Ki;Kim, Soo-Jong;Yoon, Chang-Jin;Kim, Jin-Kon;Moon, Hee-Jang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.51-59
    • /
    • 2007
  • The end-burning combustion field using impinging oxidizer injectors are analyzed with tangential type injectors in order to examine their mixing and combustion characteristics. The impinging type showed further improved mixing effect as well as the combustion efficiency compared to the previously studied tangential injector. A novel injector capable of delivering impinging and swirl effect is introduced in this study where it demonstrated that the grain coning effect can be avoided. It was found that the combined impinging and swirling flow would promote the radial mixing rate increasing the residence time and the turbulent intensity. However, the use of the step combustor which may augment the turbulent intensity did not show any notable difference compared to the basic combustor.

An Experimental Study on the Mixing Flow Structure of Turbulent Cross Flow with Respect to the Ratio of Mass Flow Rate (난류충돌유동의 질량유량비에 따른 혼합유동구조에 관한 실험적 연구)

  • 이대옥;노병준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2150-2158
    • /
    • 1992
  • This study was carried out to investigate the flow structure and mixing process of a cross mixing flow formed by two round jets with respect to the ratio of mass flow rate. This flow configuration is of great practical relevance in a variety of combustion systems, and the flow behaviour of a cross jet defends critically on the ratio of mass flow rate and the cross angle. The mass flow rate ratios of two different jets were controlled as 1.0, 0.8, 0.6, and 0.4, and the crossing angle of two round jets was fixed at 45 degree. The velocities issuing from jet nozzle with an exit diameter of 20mm were adjusted to 40m/s, 32m/s, 24m/s, and 16m/s, and the measurements have been conducted in the streamwise range of $1.1X_0$to $2.5X_0$ by an on-line measurement system consisted of a constant temperature type two channel hot-wire anemometry connected to a computer analyzing system. The original air flow was generated by a subsonic wind tunnel with reliable stabilities and uniform flows in the test section. For the analysis of the cross mixing flow structure in the downstream region after the cross point, the mean velocity profiles, the resultant velocity contours, and the three-dimensional profiles depending upon the mass flow rate ratio have been concentrately studied.

Forced Ignition Characteristics with a Plasma Jet Torch in Supersonic Flow (초음속 유동장 내 플라즈마 토치를 사용한 강제 점화 특성)

  • Kim, Chae-Hyoung;Jeung, In-Secuk;Choi, Byoung-Il;Kouchi, Toshinori;Masuya, Goro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.363-366
    • /
    • 2011
  • Mixing and combustion experiments with a vent slot mixer were performed in Mach 2 supersonic wind tunnel. Helium and hydrogen gases each were used for the mixing and the combustion experiment with a plasma jet (PJ) torch. The vent slot mixer holds plenty of fuel in the downstream mixing region, even though the fuel is transversely injected. In case of the combustion, the injected fuel is ignited by the PJ torch, and then unburned mixture is burned by shock-induced combustion downstream. Thermal choking in the combustor leads to shock trains in the isolator, causing the unstable combustion.

  • PDF

CFD Analysis on the Effect of the Nozzle Arrays and Spray Types in the Hydrogen Peroxide Mixing Quencher to Improve the Mixing Efficiency (과산화수소 혼합냉각기 내의 노즐배치 및 가스분사 방식 변화에 따른 혼합율 개선에 대한 전산해석적 연구)

  • Koo, Seongmo;Chang, Hyuksang
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.42-53
    • /
    • 2017
  • Numerical analysis was done to evaluate the fluid distribution inside of the mixing quencher to increase the reaction efficiency of the aqueous hydrogen peroxide solution in the scrubbing column which is used for simultaneous desulfurization and denitrification. Effective injection of the aqueous hydrogen peroxide ($H_2O_2$) solution in the mixing quencher has major effects for improving the reaction efficiency in the scrubbing column by enhancing the mixing of the aqueous $H_2O_2$ solution with the exhaust gas. The current study is to optimize the array of nozzles and the spray angles of the aqueous $H_2O_2$ solution in the mixing quencher by using the computational method. Main concerns of the analysis are how to enhance the uniformity of the $H_2O_2$ concentration distribution in the internal flow. Numerical analysis was done to check the distribution of the internal flow in the mixing quencher in terms of RMS values of the $H_2O_2$ concentration at the end of quencher. The concentration distribution of $H_2O_2$ at the end of is evaluated with respect to the different array of the nozzle pipes and the nozzle tip angles, and we also analyzed the turbulence formation and fluid mixing in the zone. The effect of the spray angle was evaluated with respect to the mixing efficiency in different flow directions. The optimized mixing quencher had the nozzle array at location of 0.3 m from the inlet duct surface and the spray angle is $15^{\circ}$ with the co-current flow. The RMS value of the $H_2O_2$ concentration at the end of the mixing quencher was 12.4%.

Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector (수직 오리피스 이젝터의 혼합유동 및 산소전달 특성)

  • Kim, Dong Jun;Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

A Numerical Study on Mixing of Fuel/Air Mixture and NOx Emission in a Gas Turbine Burner with a Vortex Generator (와류 발생기를 장착한 가스터빈 연소기에서 연료/공기 혼합 및 NOx 배출 특성에 관한 수치적 연구)

  • Kim, Gu;Lee, Young Duk;Sohn, Chae Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.68-74
    • /
    • 2013
  • 가스터빈용 희박 예혼합 연소기 내부에 와류 발생기(vortex generator)를 장착하여 그에 따른 연료/공기혼합 및 NOx 배출 특성 변화를 조사하였다. 이를 위해 수치해석적 방법을 채택하여 연소기내 유동특성, 연료/공기 혼합도, 배기가스(NOx), 화염형상을 분석하였다. 와류 발생기를 장착한 경우, 연소기 내부에서 와류 발생기에 의한 나사산 형상으로 인해 와류가 형성되며 이는 연소기 전면부까지 유지되었다. 또한 연소기 내부 면적 차로 인해 압력섭동이 발생하였다. 이와 더불어 연소기 전면부 기준 상류지역의 연료와 공기의 혼합도가 증가됨으로서 연료 과농지역이 감소하게 되며 이로 인해 전반적인 NOx 발생량의 감소 효과를 볼 수 있었다. 화염 형상의 변화로부터 와류 발생기의 영향으로 선회수는 다소 감소할 것으로 예상되며, 이는 와류 발생기로 인한 유속의 반복적 증감에 의한 결과라고 판단된다.

Effect of the distance between the adjacent injectors on penetration and mixing characteristics of the jet in supersonic crossflow (수평 배치된 분사구의 배치 간격에 따른 초음속 유동장 내 분사 유동의 침투 및 혼합 특성)

  • Kim, Sei Hwan;Lee, Hyoung Jin
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.4
    • /
    • pp.81-89
    • /
    • 2018
  • In the present study, a numerical investigation was conducted to analyze the effect of the distance between the adjacent injectors on the characteristics of flow structure, fuel penetration, and air/fuel mixing. Numerical results were validated with experimental data using a single injection. Subsequently, the same injector geometry and properties were applied on a non-reacting flow simulation with multiple injectors. Total pressure loss, penetration height, and mixing efficiency were compared with the distance between the injectors. The results showed that each injected gas merged into a single stream, resulting in the 2D-like flow fields under the condition of short distance and lower mixing efficiency along with higher total pressure loss. When the distance between the injectors increased, total pressure loss reduced and mixing efficiency increased due to the weakening of interactions between the injected gases.

Characteristic Study on Effect of the Vent Mixer to Supersonic Fuel-Air Mixing with Stereoscopic-PIV Method (3차원 PIV 기법을 사용한 벤트혼합기가 초음속 연료-공기 혼합에 미치는 특성 연구)

  • Kim, Chae-Hyoung;Jeung, In-Seuck;Choi, Byung-Il;Kouchi, Toshinori;Masuya, Goro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.378-385
    • /
    • 2012
  • Vent mixer can provide main flow directly into a recirculation region downstream of the mixer to enhance fuel-air mixing efficiency. Based on experimental results of three-dimensional velocity, vorticity and turbulent kinetic energy obtained by a stereoscopic PIV method, the performance of the vent mixer was compared with that of the step mixer which was used as a basic model. Thick shear layers of the vent mixer induced the increase of the penetration height. The turbulent kinetic energy mainly distributed along a boundary layer between the main flow and the jet plume. This turbulent field activates mass transfer in a mixing region, leading to the mixing enhancement.

  • PDF