• Title/Summary/Keyword: 혼합골재

Search Result 273, Processing Time 0.027 seconds

An Experimental Study on the Improvement of Quality of Mixed Aggregate Using Recycled Aggregate (순환골재 사용 혼합골재의 품질 개선을 위한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Kim, Choong-Gyum;Lee, Sea-Hyun;Kim, Han-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2018
  • In this study, recycled aggregate and natural aggregate were mixed in advance using an aggregate mixing facility that was developed to improve the quality of recycled aggregate concrete. Then the mixed aggregate was applied and concrete characteristics before and after a mix were considered. Based on the findings extracted, this study aimed to suggest a new direction for quality stabilization and application activation of recycled aggregate. The test results of change rates of mortars and coarse aggregates in fresh concrete mixed by a concrete mixer, before and after mixing aggregates showed that the variations of the mortars and coarse aggregates in the concrete mixed with the aggregates beforehand were decreased than those in the concrete before mixing them. The variation of compressive strength and the mean compressive strength at the ages of 3 and 7 days showed similar results before and after the aggregates were mixed, and the strength at the age of 28 days before and after mixing them showed larger deviation than that at the ages of 3 and 7 days. The use of the mixed aggregates after mixing aggregates beforehand reduced the variation in strength and is believed that it is advantageous for long-age strength development. The above results show that the variations of coarse aggregates and compressive strength in the concrete using the mixed aggregates produced by mixing recycled aggregates and natural aggregates beforehand are reduced so it will be possible to produce the homogeneous concrete by mixing aggregates beforehand.

Engineering Properties of the Concrete Using Reject Ash as Pre-mixed Fine Aggregate (리젝트애시를 잔골재로 프리믹스하여 활용하는 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.44-49
    • /
    • 2019
  • The purpose of this study is to analyze the fundamental characteristics of concrete with the change of reject ash(Reject ash=Rj) in the mixed aggregate where single grain aggregate of different grain size and aggregate of opposite grain size are mixed together, to analyze the possibility of a mixed aggregate system that premixes at an aggregate manufacturing plant and delivers it as one aggregate. As a result of the experimental study, it was found that the grain size regulation is satisfied if the mixed aggregate(CSb+SS) is substituted for about 5% of Rj. In the case of the fluidity slump, slump flow and air volume, it was found that they decrease as the substitution ratio of Rj increases, while the compressive strength increases as the substitution ratio of Rj increases. Therefore, it is analyzed that it would contribute greatly to an improvement of quality such as improvement of compressive strength if adequate fluidity and air quantity are secured by the water reducing agent and AE agent while premixing the Rj, which is disposed of by landfill, with about 5% of the mixed aggregate.

Application of Discoll Method to Blend Fine Aggregate for Concrete (콘크리트용 잔골재 혼합을 위한 Driscoll 방법의 적용)

  • Lee, Seong Haeng;Ham, Hyeong Gil;Kim, Tae Wan;Oh, Yong Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.178-185
    • /
    • 2011
  • Recently depletion of natural resources makes a deficiency of sand aggregation in the concrete works. In this study, the quality characteristics of concrete and aggregate according to blending fine aggregate in the river sand and the crash sand was analyzed by Normal method and Driscoll method which has used mixing of fine aggregate for asphalt mostly. Application of Discoll method to blend fine aggregate for concrete was studied in the first step to blend fine aggregates concrete. The fineness modulus, grading, slump, air content and compressive strength were tested by the two method, the results of Driscoll method was very similar to degree of err limits in comparison with those of Normal method in the same condition. As a result, Driscoll method is reasonable to use the fine aggregates mixture for concrete in river sand and crash sand.

Analysis of Fundamental Properties of Concrete Using Mix of Coarse Aggregate With Formation Causes (성인이 다른 굵은 골재를 혼합사용한 콘크리트의 기초적 특성 분석)

  • Noh, Sang-Kyun;Kim, Young-Hee;Kim, Jeong-Bin;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • Recently, attempts of replacing some of natural aggregate with mix of low quality aggregate are carried out for stable supply of aggregate. However, low quality aggregate such as recycled aggregate produced during the disposal process of construction wastes and by-product aggregate produced by industrial activities has problem of failing to comply to KS Standards. Therefore, we have compared fundamental properties of concrete by using granite crushed aggregate, recycled aggregate, blast furnace and electric arc furnace slag aggregate for effective utilization of lacking aggregate resources. As the result, slump in case of mixed use of aggregate was increased 0~10% compared to single use. Therefore, it is judged to be economically advantageous as it can expect effects in unit quantity or reduction of SP agent. Compressive strength in case of mixed use of aggregate was increased 0~10% compared to single use as it filled internal crevice of concrete with continuous particle size distribution. Accordingly, if we utilize by satisfying standard particle scope through mix of aggregate with different cause of formation in proper ratio, it was possible to confirm utility of mixed aggregate with demonstration of effects of increases of fluidity and compressive strength of concrete.

A Study on the Evaluating Method the most Favorable Mixture Proportion of Blended Fine Aggregate for Effective Application of Recycled Aggregate (재생골재의 효율적인 활용을 위한 혼합잔골재의 최적배합평가방법에 관한 연구)

  • Han, Cheon-Goo;Yoon, Gi-Won;Lee, Gun-Cheol;Park, Yong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.113-119
    • /
    • 2006
  • It is now established that more than two types of blended aggregate have beneficial effects on quality and supply of concrete in the long run. However, studies on blended aggregate have not widely been progressive and the evaluation method of its most favorable mixture proportion is still needed. Therefore this study investigated the most favorable mixture proportion through the physical experiment of fresh and hardened state's cement mortar, in response to three types of composite ratio, natural fine aggregate(Ns), crushed fine aggregate(Cs) and recycled fine aggregate(Rs). Test showed that increase of blending ratio of Ns and Cs improved fluidity of mot1ar. For the properties of compressive and flexural strength, mortar blending Ns and Cs properly, exhibited similar value to one using only Cs, while mortar mixing Rs showed lower strength value as less as 6% of control one. Mortar using only Rs exhibited the largest drying shrinkage value. In addition, even thought it is not a clear quantitative analysis, technical-imaging-skill presenting the most favorable mixture proportion 3-dimensionally is proposed in this research, in order to notify the proportion easily.

  • PDF

Analyzing the Engineering Properties of Cement Mortar Using Mixed Aggregate with Reject Ash (혼합골재에 리젝트애시를 프리믹스하여 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.247-252
    • /
    • 2017
  • The aim of this research is the feasibility analysis of the reject ash premixed cement mortar with combined aggregate. Namely, for the combined aggregate with two different qualities of aggregates, a fundamental properties of cement mortar was evaluated depending on various replacing ratios of reject ash(Ri). According to the experimental results, the combined aggregate consisted with low-quality aggregate and sea sand did not change the flow value depending on the reject ash while the combined aggregates consisted with low quality aggregate and sea sand; and consisted exploded debris sand and sea sand the increasing reject ash increased the air content with increased replacing ratio of reject ash. In the case of compressive strength, as the replacing ratio of reject ash was increased, the compressive strength was increased. It is considered that when 5% of reject ash replacing ratio made similar quality of cement mortar with favorable quality aggregate, hence, it can be suggested that 5% replacement of reject ash for desirable fluidity and compressive strength of concrete.

Analyzing the Engineering Properties of Cement Mortar using Raw Coal Ash as a Microfines for the Mixed Aggregate (미정제 석탄회를 혼합골재의 미립분 보충재로 활용하는 시멘트 모르타르의 공학적 특성 분석)

  • Han, Cheon-Goo;Park, Byung-Moon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.219-225
    • /
    • 2018
  • The aim of the research is improving the quality of concrete by using the alternative aggregate resources and recycling wastes. To make a combined aggregate fitted in standard particle size distribution curve, crushed sand from blasted rock debris was used as a base aggregate. Additionally, to increase the portion of fine particles, sea sand was mixed. Although these aggregate combination fit the standard particle size distribution curve, in this research, raw coal ash was replaced as a microfine. According to the experiment, by replacing 5% raw coal ash, the most favorable results were achieved in aggregate gradation and cement mortar quality.

A Study on the Characteristics of Recycled Aggregate Concrete According to the Mixing Ratio of Recycled Fine Aggregate at Specific Concrete Strengths (설계기준강도별 순환 잔골재 혼합비율에 따른 순환골재 콘크리트 특성에 관한 연구)

  • Sang-Hyuck, Yoon;Sea-Hyun, Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.367-375
    • /
    • 2022
  • In this study, the characteristics of recycled aggregate concrete according to the mixing ratio of recycled fine aggregate were analyzed by design strength to explore its use in the production of ready-mixed concrete. The results show that, depending on the ratio of recycled aggregate, the compressive strength is similar to that of normal concrete and does not deteriorate. Therefore, it is possible to achieve a strength similar to the target design strength. Furthermore, if the ratio of recycled fine aggregate for concrete is up to 25 % of the total aggregate amount (50 % of the to-tal fine aggregate), slump does not cause problems. Our findings show that the higher the de-sign standard strength, the greater the amount of powder, and management of slump reduction, unit quantity, and performance system is necessary. The obtained results show that recycled ag-gregate can be used for the production of ready-mixed concrete after adjusting its mixing ratio and concrete mix proportions.

Applicability of screenings for shotcrete's combined aggregates (숏크리트용 혼합골재로서 스크리닝스의 활용성 연구)

  • Han, Seung-Hwan;Yoo, Tae-Seok;Kim, Nag-Young;Kim, Hong-Jong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.149-160
    • /
    • 2013
  • In the mix proportion of shotcrete, it was analyzed as required in terms of eco-friendly technology to take advantage of the screenings. Screenings of recycling can be a solution in order to overcome the quality degradation due to the recent lack of good quality sand as well as the utilization of waste materials. Five regional screening and screening replaced fine aggregates for physical characteristics were analyzed to evaluate the usability screenings as shotcrete's combined aggregate. It was analyzed the effect of particle size distribution in the combined aggregate for shotcrete and maximum replacement was estimated according to the type of screenings.

Characteristics of Asphalt Concrete Mixed with Polyethylene Aggregate (폐비닐 골재 혼합 아스콘의 성질)

  • Kim, Youngchin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.5-11
    • /
    • 2017
  • The 19 mm-sized aggregate was produced by melting vinyl waste (waste polyethylene film) generated from vinyl greenhouses in rural areas. It was mixed with As'cone at various weight ratios, and then insulation effect test, tension test after repeated freezing and thawing, ice pull-out strength test and field density test were conducted for the mixtures. These results demonstrated that as the mixing ratio of polyethylene aggregate increased, the insulation effect increased, due to the many pore spaces that existed in the polyethylene aggregate. After repeatedly freezing and thawing As'cone, the tensile strength significantly increased at 2.5% of the polyethylene aggregate content rather than 0% of polyethylene aggregate content but it also slightly decreased at 5% and 10% of polyethylene aggregate content in comparison to 2.5% of its polyethylene aggregate content. As'cone added with polyethylene aggregate by 2.5% resulted in lower ice pull-out strength than that of normal As'cone. As a result of the porosity test for the samples taken at the site, porosity of the As'cone, which added polyethylene aggregate, was smaller than that of the general As'cone.