• Title/Summary/Keyword: 혼잡 교통류

Search Result 108, Processing Time 0.023 seconds

A Study on the Modification Value for Estimation of Traveling Speed During Rainfall in Interrupted Traffic Flow (단속교통류에서 강우시 평균통행속도 산정을 위한 보정계수에 관한 연구)

  • Mo, Moo Ki;Lee, Seung Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.837-844
    • /
    • 2017
  • Generally, V/C ratio in uninterrupted traffic flow and average travel speed in interrupted traffic flow are utilized as measure of effect for assessing operational situation of roads. The set of road conditions and traffic conditions are considered to be major variables for assessing operational situation in the traffic flow. However, weather conditions such as rainfall also affect the operational situation of roads. The studies reflected by the rainy situation are conducted in the uninterrupted flow, but the related studies are insufficient in the interrupted flow. In this study, the modification factors during rainfall in the interrupted flow were suggested, and the factors could be used when calculating the average travel speed during rainfall in the interrupted flow. By utilizing the data that were investigated in the same road and traffic conditions and the different weather conditions (rainy day or clear day), the modification factors were founded on regression analysis of the travel speed during rainfall as a dependent variable. Modification factors was suggested in dividing peak time, non-peak time, and whole period. Based on this study, the modification factors can be used to complementing the average travel speed model for assessing the operational situation of urban streets during rainfall.

Alternative Measures of Effectiveness for Evaluating ITS Project (ITS 사업평가를 위한 효과척도 대안)

  • Kim, Bong-Seok;Nam, Seung-Yeon;Ahn, Sun-Young;Son, Bong-Soo
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.3
    • /
    • pp.83-91
    • /
    • 2012
  • The objective of this study is to build a methodology for evaluating intelligent transportation systems (ITS) projects, by selecting measures of effectiveness (MOEs) and developing an approach to collect and process traffic data. While reviewing the existing MOEs and evaluation methodologies for ITS projects, several problems were found, such as the complication in delineating study areas, the absence of standardized evaluation methodologies, and the duplication in selecting MOEs. To tackle these problems, two MOEs capable of directly evaluating traffic conditions were chosen: i.e., average vehicle speed and traffic volume. Both MOEs can not only include all the functions of the existing MOEs, but also be simpler and more objective in evaluating real traffic conditions. The traffic volume can be measured by using either "cordon line" or "all point average" methods. On the other hand, measuring the average vehicle speed depends on site-specific characteristics such as traffic flow states (interrupted or uninterrupted) and traffic conditions (congested or uncongested). The present methodology is easily understandable for anyone and applicable for any ITS project, and is also expected to contribute to building a standardized evaluation system.

Methodology for Determining RSE Spacing for Vehicle-Infrastructure Integration(VII) Based Traffic Information System (Focused on Uninterrupted Traffic Flow) (차량-인프라 연계(VII) 기반 교통정보시스템의 RSE 설치간격 결정 방법론 (연속류를 중심으로))

  • Park, Jun-Hyeong;O, Cheol;Im, Hui-Seop;Gang, Gyeong-Pyo
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.29-44
    • /
    • 2009
  • A variety of research efforts, using advanced wireless communication technologies, have been made to develop more reliable traffic information system. This study presents a novel decentralized traffic information system based on vehicle infrastructure integration (VII). A major objective of this study was also to devise a methodology for determining appropriate spacing of roadside equipment (RSE) to fully exploit the benefits of the proposed VII-based traffic information system. Evaluation of travel time estimation accuracy was conducted with various RSE spacings and the market penetration rates of equipped vehicle. A microscopic traffic simulator, VISSIM, was used to obtain individual vehicle travel information for the evaluation. In addition, the ANOVA tests were conducted to draw statistically significant results of simulation analyses in determining the RSE spacing. It is expected that the proposed methodology will be a valuable precursor to implementing capability-enhanced next generation traffic information systems under the forthcoming ubiquitous transportation environment.

Signal Optimization Model Considering Traffic Flows in General Traffic Networks (일반적인 네트워크에서의 신호최적화모형 개발 연구)

  • 신언교;김영찬
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Most existing progression bandwidth models maximize the single or multi weighted sum of bandwidths in the both directions to improve traffic mobility on an arterial, but they cannot be applied to general networks. Even though a few models formulating a looped network problem cannot be applied to networks have not loops. Also they have some defects in optimizing phase sequences. Therefore, the objective of this study is to develope a mathematical formulation of the synchronization problem for a general traffic network. The goal is achieved successfully by introducing the signal phasing for each movement and expanding the mixed integer linear programming of MAXBAND. The experiments indicate that the proposed model can formulate the general traffic network problem mere efficiently than any other model. In conclusion, this model may optimize signal time to smooth progression in the general networks.

  • PDF

A Study on Roundabout Modeling and Saturation for Level Of Service (회전교차로 서비스수준 분석을 위한 모형개발 및 포화도 산정 연구)

  • Chang, Hyunho;Yoon, Byoungjo;Lee, Jinsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.869-875
    • /
    • 2019
  • The service level of the roundabout is estimated through an analytic model using the geometrical characteristics and parameter values obtained from the observations. Although a lot of researches have been conducted on the rotational intersection through an analytical model, the case of variable combinations is enormous, suggesting the range and service level of appropriate traffic volume according to the case study or limited characteristics through simulation. Therefore, in this study, the roundabout analysis model was constructed by using Visual Basic Application to make variable adjustment more easily. The constructed model analyzes traffic conditions according to various situations and analyzes the characteristics of roundabouts. As the result of analysis, the more the ratio of left turn and U-turn, the more the traffic distribution of each approached road was biased to one side, the limit traffic volume of the roundabout decreased and congestion appeared quickly. In particular, the more uneven the distribution of traffic was, the less the Saturation traffic volume was affected by the turnover rate.

Benefit Analysis of Carpool Service in Public Agencies Transferring Innovation Cities (혁신도시이전 공공기관의 카풀 도입 편익분석)

  • Do, Myung sik;Jung, Ho yong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.169-181
    • /
    • 2017
  • As vehicle supply rate increases, traffic jam-related problems emerge and sharing transportation including carpool, centered on the advanced countries, becomes a major interest. This study aims to analyze benefit generated by carpool during the rush hours of medium and long distance travel, focused on the workers of public Agencies relocated to innovation cities. In order to compute benefit, carpool demand of relocated public Agencies was estimated and travel speed was estimated according to reduced traffic volume through carpool adoption using a traffic flow model. The benefit were computed dividing them into direct benefit and indirect benefit. As a result, 23billion KRW and 56.5billion KRW were annually revealed to be generated in terms of direct benefit and indirect benefit. The study result is expected to be used as part of basic research to adopt carpool for future traffic demand management.

Design of Operator for Searching Trip Time Dependent Shortest Path in a Road Network (도로 네트워크 환경에서 운행 시간을 고려한 최단 경로 탐색 연산자 설계)

  • Lee, Dong-Gyu;Lee, Yang-Koo;Jung, Young-Jin;Ryu, Keun-Ho
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.51-54
    • /
    • 2005
  • 최근 도로 네트워크 환경에서 날로 증가하는 교통 수요를 충족시키고 각종 교통 문제를 해결하기 위해서 지능형교통시스템(ITS, Intelligent Transportation System)을 적용하고 있다. 특히, 첨단교통정보 시스템(ATIS, Advanced Traveler Information System)은 개별 차량의 주행을 최적화시키는 시스템으로서 운전자에게 출발지에서 목적지까지 빠르고 쾌적한 주행경로를 제공하는 차량 경로계획 수립을 제공한다. 하지만 이러한 시스템은 도로 구간의 비용으로 정적인 값을 이용하므로 동적으로 변화하는 구간 비용을 가지고 도로 네트워크에서 최단 경로를 제공하기는 어렵다. 따라서, 이 논문에서는 교통 혼잡을 고려한 최단 경로 탐색 연산자를 제안한다. 제안된 연산자는 현재 시간 비용과 과거의 시간 비용 변화 량을 더하여 출발지에서 목적지까지 경로를 탐색하는데 이용한다. 이러한 방법은 시간에 따라 변화하는 도로의 상황을 반영하며 출발지에서 목적지까지의 최단 경로뿐만 아니라 예상 도착 시간을 추정할 수 있다. 또한 제안된 연산자는 효율적인 도로 이용, 물류비용 감소, 응급 상황 대체, 연료 절약 및 환경 오염 감소 등의 장점을 가지며 첨단교통정보시스템에서 응용 될 수 있다.

  • PDF

Development of Density Measurement Technique Based on Two Point Detectors and Measurement Reliability According to Different Sensing Gaps (두 지점의 지점검지기를 이용한 밀도측정방안 개발 및 측정간격에 따른 신뢰성 분석)

  • Lee, Cheong-Won;Kim, Min-Seong;Park, Jae-Yeong;Lee, Eun-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.157-167
    • /
    • 2010
  • Density is the most important congestion indicator among the three fundamental flow variables, flow, speed and density. Measuring density in the field has two different ways, direct and indirect. Taking photos with wide views is one of direct ways, which is not widely used because of its cost and lacking of proper positions. Another direct density measuring method using two point detectors has been introduced with the concept of instantaneous density, average density and measurement interval. The relationship between accuracy and measurement interval has been investigated using the SIMULATION data produced by Paramics Application Programming Interface function. We analyze the affect of segment density accuracy by sensing gap each road condition such as sensing segment length, lane and LOS after gathering data by Paramics Application Programming Interface.

Empirical Analysis on Radio Communication Range and Vehicle Ratio in V2X Environment (무선 통신 가능 범위와 V2X 차량 비율에 관한 경험적 분석)

  • Park, Sang-Ung;Kim, Joo-Young;Na, Sung-Yong;Lee, Seung-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.29-41
    • /
    • 2016
  • V2X environment is the most popular part of the C-ITS based on the high technologies. To evaluate V2X environment technologies, radio communication range and market penetration rate of V2X vehicle are used. This paper studies the V2X environment considering various traffic congestion level, radio communication range and market penetration rate of V2X vehicle using the microscopic simulation (VISSIM) based on proper parameters and algorithm. In conclusion, V2X environment can reduce the congestion in proper traffic volume. However, if traffic volume is almost near the capacity, even V2X environment can't relieve the road condition. Furthermore, increase of the radio communication range does not always mean the decrease of the congestion and even with the small market penetration rate, it can also have an impact on the V2X environment. This result will be the foundation for the V2X environment much better.

Spatiotemporal Traffic Density Estimation Based on Low Frequency ADAS Probe Data on Freeway (표본 ADAS 차두거리 기반 연속류 시공간적 교통밀도 추정)

  • Lim, Donghyun;Ko, Eunjeong;Seo, Younghoon;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.208-221
    • /
    • 2020
  • The objective of this study is to estimate and analyze the traffic density of continuous flow using the trajectory of individual vehicles and the headway of sample probe vehicles-front vehicles obtained from ADAS (Advanced Driver Assitance System) installed in sample probe vehicles. In the past, traffic density of continuous traffic flow was mainly estimated by processing data such as traffic volume, speed, and share collected from Vehicle Detection System, or by counting the number of vehicles directly using video information such as CCTV. This method showed the limitation of spatial limitations in estimating traffic density, and low reliability of estimation in the event of traffic congestion. To overcome the limitations of prior research, In this study, individual vehicle trajectory data and vehicle headway information collected from ADAS are used to detect the space on the road and to estimate the spatiotemporal traffic density using the Generalized Density formula. As a result, an analysis of the accuracy of the traffic density estimates according to the sampling rate of ADAS vehicles showed that the expected sampling rate of 30% was approximately 90% consistent with the actual traffic density. This study contribute to efficient traffic operation management by estimating reliable traffic density in road situations where ADAS and autonomous vehicles are mixed.