• Title/Summary/Keyword: 혼성암

Search Result 17, Processing Time 0.026 seconds

The Characteristic of Mangerite and Gabbro in the Odaesan Area and its Meaning to the Triassic Tectonics of Korean Peninsula (오대산 지역에 나타나는 맨거라이트와 반려암의 특징과 트라이아스기 한반도 지체구조 해석에 대한 의미)

  • Kim, Tae-Sung;Oh, Chang-Whan;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.77-98
    • /
    • 2011
  • The igneous complex consisting of mangerite and gabbro in the Odaesan area, the eastem part of the Gyeonggi Massif, South Korea, intruded early Paleo-proterozoic migmatitic gneiss. The mangerite is composed of orthopyroxene, clinopyroxene, amphibole, biotite, plagioclase, pethitic K-feldspar, quartz. The gabbro has similar mineral assemblage but gabbro has minor amounts of amphibole and no perthitic K-feldspar. The gabbro occurs as enclave and irregular shaped body within the mangerite, and the boundary between the mangerite and gabbro is irregular. Leucocratic lenses with perthitic K-feldspar are included in the gabbro enclaves. These textures represent mixing of two different magmas in liquid state. SHRIMP U-Pb zircon age dating gave $234{\pm}1.2$ Ma and $231{\pm}1.3$ Ma for mangerite and gabbro, respectively. These ages are similar with the intrusion ages of post collision granitoids in the Hongseong (226~233 Ma) and Yangpyeong (227~231 Ma) areas in the Gyeonggi Massif. The mangerite and gabbro are high Ba-Sr granites, shoshonitic and formed in post collision tectonic setting. These rocks also show the characters of subduction-related igneous rock such as enrichment in LREE, LILE and negative Nb-Ta-P-Ti anomalies. These data represent that the mangerite and gabbro formed in the post collision tectonic setting by the partial melting of an enriched lithospheric mantle during subduction which occurred before collision. The heat for the partial melting was supplied by asthenospheric upwelling through the gab between continental and oceanic slabs formed by slab break-off after continental collision. The distribution of post-collisional igneous rocks (ca. 230 Ma) in the Gyeonggi Massif including Odaesan mangerite and gabbro strongly suggests that the tectonic boundary between the North and South China blocks in Korean peninsula passes the Hongseong area and futher exteneds into the area between the Yangpyeong-Odaesan line and Ogcheon metamorphic belt.

Occurrences of Sepiolites within a Seosan Group, Western Part of Chungnam (충남 서부 서산층군 내 해포석의 산출)

  • Song, Suckhwan;Lim, Koju;Lee, Wooseok
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • This study examines the mineralogy of sepiolites occurred within the carbonaceous rocks of Songak schist and Pyeongtaek migmatitic gneiss of Precambrian Seosan group, in the western part of Chungnam. Host rocks of the sepiolite were dolomitic rocks and have experienced hydrothermal alteration and metamorphism. Mesozoic granite is assumed as a main source of hydrothermal alteration for the dolomitic rocks. Some of the tremolite asbestos coexist with the sepiolites. Representative sepiolite and tremolite samples were collected from the layers cracks or fractures of the dolomitic rocks and/or examined with microscope with microscope, XRD, SEM and TEM. Sepiolites are mainly recognized along the cracks assumed as pathways of hydrothermal solution. Tremolites are mainly found at layers or cracks of the dolomitic rocks and occur as asbestos as well as non-asbestos forms. It was confirmed that some of the tremolite asbestos were coexisted with the sepiolites. Overall results suggest that the occurrences of sepiolites within the dolomitic rocks mainly result in the hydrothermal alteration and the fluid from the acidic rocks, possibly granites. It also suggests that coexisting tremolite asbestos were formed by similar geological environment.

A Preliminary Study on the Exhumation Mechanism of the Paleozoic Gwangcheon Gneiss in the Southwestern Margin of the Gyeonggi Massif (경기육괴 남서 연변부에 발달하는 고생대 광천편마암의 노출기작에 대한 예비 연구)

  • Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.525-535
    • /
    • 2017
  • Exhumation mechanism of migmatite in orogenic belts provides insights into thermo-mechanical evolution of lithosphere in association with orogeny. This study deals with kinematics of structures in and around the Gwangcheon Gneiss, as a preliminary study on exhumation mechanism, which is a main constituent of a domal structure (viz., Oseosan Dome) in the Hongseong area, southwestern margin of the Gyeonggi massif. Geological structures in the Gwangcheon Gneiss, which mainly comprises southern and northwestern part of the Oseosan Dome, generally have kinematic component of top-outward shear. This feature is likely to represent diapiric dome-up movement. In addition, a high strain zone, by which the tectonic domain involving the Gwangcheon Gneiss is bounded on the west, show structural features with normal sense of shear component. Taking available (thermo)chronological data into account, it is interpreted that activation of the high strain zone and exhumation of the Gwangcheon Gneiss occurred during Late Triassic, when the Gyeonggi massif was widely affected by post-collisional processes. It means that the Gwangcheon Gneiss was diapirically moved up and exhumed in the footwall of extensional high strain zone in association with Triassic post-collisional processes.

Mineralization and Characterization of Boseung Kaolin in Gaya Area (가야 지역 보성 고령토의 광화작용 및 광물 특성)

  • Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.397-413
    • /
    • 2008
  • In Gaya area, the Boseong kaolin deposits exhibit locally unusual occurrences such as downward enrichment of kaoin minerals, characteristic hydrothermal alterations (illite and stilbite), and phase relations among kaolin minerals in addition to the extensive weathering of anorthositic country rocks. This indicates that the kaolin deposits seem to be genetically formed as a mixed hydrothermal and residual model. The kaolin ores can be divided into five types on the basis of differences in occurrence, mineral composition and characters. These consist of two types of high-grade ores ranging above 80% in grade and low-grade ores as low as less than 80% including feldspar residuals or the peculiar impurity phase of illite-vermiculite-stilbite. Halloysite and kaolinite are mostly coexisted in the Boseong kaolin, and these kaolin minerals exhibit diverse appearances in crystallinity and morphology. Such a diversity in mineral phase and crystallinity seems to be originated from the complexity in genesis. In addition to these diverse characters of the kaolin, its applied-mineralogical characteristics such as chemical composition, thermal properties, whiteness, viscosity, and etc. made it disadvantageous in terms of ore quality.

Geological Comparison Between Musan Iron Deposit in North Korea and Iron Deposits in Anshan-Benxi Area in China (북한 무산 철광상과 중국 안산-번시 철광화대 지질학적 비교)

  • Kim, Namhoon;Koh, Sang-Mo;Lee, Bum Han
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.215-225
    • /
    • 2018
  • Musan iron deposit in North Korea and iron deposits in Anshan-Benxi area in China are Archean banded iron formations and included in Longgang block in Eastern block of North China Craton. Host formations of Musan iron deposit and Anshan-Benxi iron mineralized belt are Musan group and Anshan group, respectively. These groups consist of magnetite-bearing quartzite, amphibolite, schist, and migmatite. Host rock of banded iron formation in Musan deposit and Anshan-Benzi mineralized belt is magnetite-bearing quartzite. Shape of ore bodies in Musan deposit is horse's hoof due to the fold while shape of orebodies in Anshan-Benxi mineralized belt is layer. The previous studies revealed the both of banded iron formations are contemporaneously deposited during the late Archean (Musan deposit and iron deposits in Anshan-Benxi area: 2.66-2.52 Ga and 2.55-2.53 Ga, respectively). Musan deposit and iron deposits in Anshan-Benxi mineralized belt belolng to Algoma type BIFs. In conclusion, the characteristics of geology, formation ages, and deposit types of Musan deposit and Anshan-Benxi minerlized belt are very similar.

Electrochemical Characteristics of CNT/TiO2 Nanocomposites Electrodes for Cancer Cell Sensor (바이오 센서용 CNT/TiO2 나노 복합 전극의 전기화학적 특성)

  • Kim, Han-Joo;You, Sun-Kyung;Oh, Mi-Hyun;Shen, Qin;Wang, Xuemei;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.105-108
    • /
    • 2008
  • In the recent years, increasing interests are being focused on the rational functionalization of the CNTs by some creative methods. However, the considerable toxicity of CNT is still a controversialissue and limits its biological application. To improve the biocompatibility of CNT, in this work we prepared CNT-$TiO_2$ nanocomposites with CNT and organic titanium precursors. Our observations demonstratethat the modified interface could accelerate the heterogeneous electron transfer rates and thusenhance the relevant detection sensitivity, suggesting its potential application as the new strategy for the development of the biocompatible and multi-signal responsive biosensors for the early diagnosis of cancers.

Genesis and Classification of the Red-Yellow Soils derived from Residuum on Acidic and Intermediate Rocks -II. Songjeong series (산성암(酸性岩) 및 중성암(中性岩)의 잔적층(殘積層)에 발달(發達)한 적황색토(赤黃色土)의 생성(生成) 및 분류(分類) -제(第)II보(報) 송정통(松汀統)에 관(關)하여)

  • Um, Ki Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.2
    • /
    • pp.75-81
    • /
    • 1973
  • The morphological, physical, and chemical properties of Sonjeong series derived from acidic crystalline rocks are presented. Also it deals with the genesis and classification of the Songjeong series. Morphologically these soils have brown to dark brown loam A horizons and yellowish red to red clay loam Bt horizons with moderate, medium subangular blocky structure and thin patchy clay cutans on the ped faces. C horizons are very deep, yellowish red to yellowish brown fine sandy loam or sandy loam with original rock structure. Physically distribution of particle size indicates that clay increases with depth up to argillic horizons but below the argillic horizons clay content decrease. The moisture holding capacity is fairly good in Songjeong soils. Chemically soil reaction is strongly to very strongly acid throughout the profile and content of organic matter is less than 1 per cent except A horizons. Cation exchange capacity ranges from 5 to 9 me/100g of soils and base saturation is less than 35 per cent throughout the profile. The natural fertility of Songjeong soils are usually low. It needs lime, organic matter, and heavy application of fertilizer for the crop land. These soils occur temperate and humid climate under coniferous, deciduous, and mixed forest vegetation. Songjeong soils are classified as Red-Yellow Soils. Characteristically Songjeong soils are similar to Red-Yellow Podzolic soils in the United States but lack of A2 horizons and are quite liket Red-Yellow Soils of the Japan. According to new classification system which is 7th approximation of USDA Songjeong soils can be classified as fine loamy, mesic family of Typic Hapludults and in the FAO/UNESCO project World Soil Map as Orthic Acrisols.

  • PDF