• Title/Summary/Keyword: 호흡측정기

Search Result 42, Processing Time 0.021 seconds

Biotransforamtion of inorganic nitrogens in soil of near bank filtration sites using respirometer (호흡량에 기준한 강둑여과지 주변 표층토의 무기질소 변환)

  • 공인철;배진희;최은영;김승현
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 1999
  • Biotransformation of inorganic nitrogens, which are possible contaminants of bank filtered water, in soil of near bank filtration site was investigated based on oxygen consumption and changes of chemical parameters in respirometer. Biotransformation activities of inorganic nitrogens at different conditions of pH. water content. and added initial${NH_4}_2$$SO_4$were compared. At original low pH and 20% of water content, nearly no biotransformation activity of inorganic nitrogen was observed, in addition, control and NH$_4$-added sets did not show any significant differences of oxygen consumption. Among tested conditions, the highest activity was observed at 25% water content and pH 8. Nearly 98% nitrification activity was observed at sets amended with 400 mg $NH_4$-N/kg soil as${NH_4}_2$$SO_4$in the condition of pH 8 and 20~23% water content. However, considerable activity of subsequent denitrification was not observed.

  • PDF

Measurement of Biological Activity in Pilot Scale Dyeing Wastewater Process by Using Respirometer (호흡률 측정기를 이용한 파일럿 스케일 염색폐수처리 장치에서의 생물학적 활성 측정)

  • Jeon Hyun Hee;Choi Kwang Keun;Yoon In Jun;Lee Jin Won
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.390-393
    • /
    • 2004
  • Oxygen uptake rate (OUR) was used as an indicator of microbial activity. In this study OUR at dyeing wastewater in the pilot plant was monitored to examine biological activity. Correlation between inlet COD concentration and maximum OUR showed that maximum OUR was proportional to inlet COD concentration. Changes in the OUR values reflected the changing waste load in the reactor. Consequently, OUR can be used to estimate biological activity of inlet COD concentration. This study showed that biodegradable COD at dyeing wastewater could be calculated from OUR and yield coefficient. Non-biodegradable COD was able to be calculated from a difference between initial COD concentration and biodegradable COD.

Measurement of Biological Activity in Pharmaceutic Wastewater by Using Respirometer (호흡률 측정기를 이용한 제약폐수의 생물학적 활성 측정)

  • 이영락;이기용;임지훈;이상훈;문흥만;심상준;이진원
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.183-187
    • /
    • 2001
  • The biological activities of wastewater and sludge taken from the wastewater treatment process of Hyangnam pharmaceutic factories in Hwaseong, Kyeonggi-Do was measured using a respirometer. Oxygen uptake rate (OUR) was used as a tool for measuring biological activity. OUR was measured for varying amounts of sludge and organic chemicals in wastewater, and its toxicity was evaluated. Maximum OUR was observed as 61, 75, and 89 mg O$_2$/L/hr when sludge was added as 3, 5, and 10% of total volume, respectively. When the concentration of organic chemicals was changed to 1,486, 337, and 164 mg COD/L, maximum OUR was 53, 13, 8 mg O$_2$/L/hr, respectively. The toxicity test results showed that there seemed that there seemed to be no observable toxic effect on microbes in pharmaceutic wastewater.

  • PDF

Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control (호흡률 및 송풍기 제어 기반 포기조 최적 DO 농도 설정과 전력 비용 절감 연구)

  • Lee, Kwang Su;Kim, Minhan;Kim, Jongrack;Yoo, Changkyoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.581-586
    • /
    • 2014
  • Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.

Evaluation of the Accuracy for Respiratory-gated RapidArc (RapidArc를 이용한 호흡연동 회전세기조절방사선치료 할 때 전달선량의 정확성 평가)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Bae, Sun Hyun;Shin, Dong Oh;Kim, Dong Wook
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.127-132
    • /
    • 2013
  • The position of the internal organs can change continually and periodically inside the body due to the respiration. To reduce the respiration induced uncertainty of dose localization, one can use a respiratory gated radiotherapy where a radiation beam is exposed during the specific time of period. The main disadvantage of this method is that it usually requests a long treatment time, the massive effort during the treatment and the limitation of the patient selection. In this sense, the combination of the real-time position management (RPM) system and the volumetric intensity modulated radiotherapy (RapidArc) is promising since it provides a short treatment time compared with the conventional respiratory gated treatments. In this study, we evaluated the accuracy of the respiratory gated RapidArc treatment. Total sic patient cases were used for this study and each case was planned by RapidArc technique using varian ECLIPSE v8.6 planning machine. For the Quality Assurance (QA), a MatriXX detector and I'mRT software were used. The results show that more than 97% of area gives the gamma value less than one with 3% dose and 3 mm distance to agreement condition, which indicates the measured dose is well matched with the treatment plan's dose distribution for the gated RapidArc treatment cases.

The effects of lumbar stabilization exercise on respiratory pressure in stroke patients (허리안정화운동이 뇌졸중환자의 호흡압력에 미치는 영향)

  • Park, Shin-Jun;Oh, Dae-Sik
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.357-364
    • /
    • 2017
  • The purpose of this study was to investigate the exercise periods changes of the waist stabilization exercise on the inspiratory and expiratory pressure of stroke patients. Thirty-six stroke patients were divided into 17 lumbar stabilization group(LSEG) and 19 general exercise group(GPEG). In both groups, inspiratory and expiratory pressure using a respiratory pressure device was measured over 4 and 8 weeks. At maximal expiratory pressure, LSEG was significantly increased in Before, 4 weeks and 8 weeks according to the period, but there was no significant difference in GPEG in all periods. At maximal inspiratory presusre, there was no significant difference in LSEG between before-4 weeks and 4-8 weeks, but there was a significant increase in Before-8weeks. There was no significant difference in all periods of GPEG group. There was no significant difference in the amount of change between the two groups. In this study, it was found that the lumbar stabilization exercise was effective in improving the expiratory pressure in the stroke patients. If the stroke patient continues to lumbar stabilization exercise, it is also an effective method for inspiratory pressure. Future studies are expected to study individual respiratory muscle measurements after lumbar stabilization exercise.

Design and Implementation of Biological Signal Measurement Algorithm for Remote Patient Monitoring based on IoT (IoT기반 원격환자모니터링을 위한 생체신호 측정 알고리즘 설계 및 구현)

  • Jung, Ae-Ran;You, Yong-Min;Lee, Sang-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.957-966
    • /
    • 2018
  • Recently, the demand for remote patient monitoring based on IoT has been increased due to aging population and an increase in single-person household. A non-contact biological signal measurement system using multiple IR-UWB radars for remote patient monitoring is proposed in this paper. To reduce error signals, a multilayer Subtraction algorithm is applied because when the background subtraction algorithm was applied to the biological signal processing, errors occurred such as voltage noise and staircase phenomenon. Therefore, a multilayer background subtraction algorithm is applied to reduce error occurrence. The multilayer background subtraction algorithm extracts the signal by calculating the amount of change between the previous clutter and the current clutter. In this study, the SVD algorithm is used. We applied the improved multilayer background subtraction algorithm to biological signal measurement and computed the respiration rate through Fast Fourier Transform (FFT). To verify the proposed system using IR-UWB radars and multilayer background subtraction algorithm, the respiration rate was measured. The validity of this study was verified by obtaining a precision of 97.36% as a result of a control experiment with Neulog's attachment type breathing apparatus. The implemented algorithm improves the inconvenience of the existing contact wearable method.

Analysis of the Convergence Pulmonary Function in the 20s Men of Mild Intellectual Disabilities according to Multiple Lying Positions (경도의 지적장애를 가진 20대 대학생의 다양한 누운 자세별 복합적 폐활량에 대한 비교)

  • Kim, Ok-Ki;Park, Seung-Hwan;Seo, Kyo-Chul;Cho, Mi-Suk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.169-175
    • /
    • 2019
  • The purpose of this study was to determine whether changes of multiple lying position might effect the convergence pulmonary function of the 20s men of mild intellectual disabilities. Twenty subjects of mild intellectual disabilities were participated in the experiment. Subjects were assessed for vital capacity by using Fit mate according to the multiple lying position changes(supine position, right sidelying position, left sidelying position, prone position). One-way repeated ANOVA analyzed each region data of vital capacity of subjects according to their multiple lying position. The result of the experiment showed that the 20s men of mild intellectual disabilities have more higher vital capacity to right sidelying position than another lying position. This study suggests that the pulmonary functional data of 20s men of mild intellectual disabilities in this experiment can be used as a basic respiratory one for the bed exercise programs in the area of the physical activities.

A Study of Organic Matter Fraction Method of the Wastewater by using Respirometry and Measurements of VFAs on the Filtered Wastewater and the Non-Filtered Wastewater (여과한 하수와 하수원액의 VFAs 측정과 미생물 호흡률 측정법을 이용한 하수의 유기물 분액 방법에 관한 연구)

  • Kang, Seong-wook;Cho, Wook-sang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.58-72
    • /
    • 2009
  • In this study, the organic matter and biomass was characterized by using respirometry based on ASM No.2d (Activated Sludge Model No.2d). The activated sludge models are based on the ASM No.2d model, published by the IAWQ(International Association on Water Quality) task group on mathematical modeling for design and operation of biological wastewater treatment processes. For this study, OUR(Oxygen Uptake Rate) measurements were made on filtered as well as non-filtered wastewater. Also, GC-FID and LC analysis were applied for the estimation of VFAs(Volatile Fatty Acids) COD(S_A) in slowly bio-degradable soluble substrates of the ASM No.2d. Therefore, this study was intended to clearly identify slowly bio-degradable dissolved materials(S_S) and particulate materials(X_I). In addition, a method capable of determining the accurate time to measure non-biodegradable COD(S_I), by the change of transition graphs in the process of measuring microbial OUR, was presented in this study. Influent fractionation is a critical step in the model calibrations. From the results of respirometry on filtered wastewater, the fraction of fermentable and readily biodegradable organic matter(S_F), fermentation products(S_A), inert soluble matter(S_I), slowly biodegradable matter(X_S) and inert particular matter(X_I) was 33.2%, 14.1%, 6.9%, 34.7%, 5.8%, respectively. The active heterotrophic biomass fraction(X_H) was about 5.3%.

  • PDF

Development of Sleep-disordered Breathing Detection System using Air-mattress and Pulse Oximeter (에어 매트리스와 산소 포화도 측정기를 이용한 수면호흡장애 자동 검출 시스템 개발)

  • Jeong, Pil-Soo;Park, Jong-Uk;Joo, Eun-Youn;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.153-162
    • /
    • 2017
  • The present study proposes a system that can detect sleep-disordered breathing automatically using an air mattress and oxygen saturation. A thin air mattress was fabricated to reduce discomfort during sleep, and respiration signals were acquired. The system was configured to be synchronized with a polysomnography to receive signals simultaneously with other bio-signals. The present study has been conducted with nine adult male and female patients with sleep-disordered breathing, and sleep-disordered breathing events have been detected by applying the signals acquired from the subjects to the rule-based detection algorithm. The sensitivity and positive predictive values were found to evaluate the performance of the system, which are 91.4% and 89.7% for all events, respectively. The comparison of apnea hypopnea index(AHI) between the polysomnography and the proposed method showed squared R-value of 0.9. This study presents the possibility of detecting sleep-disordered breathing at hospitals or homes using the proposed system.