• Title/Summary/Keyword: 호흡수

Search Result 2,131, Processing Time 0.028 seconds

COPD Patients with Hypercapnic Respiratory Failure : Response to Therapy and Determinant of Intubation (만성폐쇄성폐질환 환자의 고탄산혈증성 호흡부전 : 치료 반응 및 기도삽관의 결정인자)

  • Song, So-Hyang;Kim, Chi-Hong;Kim, Young-Kyoon;Kim, Kwan-Hyoung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.4
    • /
    • pp.462-472
    • /
    • 2001
  • Background : The determinants of intubation and the response to therapy in COPD patients with hypercapnic respiratory failure were retrospectively reviewed. Methods : This study involved a review of 132 episodes of hypercapnic respiratory failure($PaCO_2\;{\geq}\;50\;mmHg$ and $pH\;{\leq}\;7.35$). The time frame for resolution or the time to intubation of patients who were admitted between 1996 and 1999 was analyzed. Results : Out of 132 hypercapnic episodes, 49(37%) required intubation. A comparison was made with the 83 cases that responded to treatment. Patients requiring intubation had a greater severity of illness, which included a higher APACHE II (Acute Physiology and Chronic Health Evaluation II) score ($20{\pm}5$ vs $14{\pm}4$ ; p<0.01), a higher WBC, a higher serum BUN, and greater acidosis (pH, $7.23{\pm}0.11$ vs $7.32{\pm}0.04$ ; p<0.01). Those with the most severe acidosis(pH<7.20) had the highest intubation rate(87%) and shortest time to intubation($2{\pm}3\;h$). Conversely, those with an initial pH 7.31 to 7.35 were less likely to be intubated(20%), and had a longer time to intubation($97{\pm}121\;h$). The patients with a pH 7.21 to 7.25($4.1{\pm}2.9$ day) required longer period of time to respond to medical treatment than patients with a pH of 7.31 to 7.35($2.2{\pm}3.1$ day). Of those patients requiring intubation, half(55%) were intubated within 8 h of admission, and most (75%) within 24 h. Of those patients responding to treatment medical therapy, half(52%) recovered within 24 h and most (78%) recovered within 48 h. Conclusion: Respiratory acidosis at the initial presentation is associated with an increased likelihood of intubation. This should assist in deciding help with the decision whether to treat patients medically, institute noninvasive ventilation, or proceed to intubation.

  • PDF

Collection of Low Power Sensor Data using BLE Method (BLE 방식을 이용한 저전력형 센서 데이터의 수집)

  • Kim, Ki-Hyun;Kim, Woo-Chan;Kwak, Ho-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.11-12
    • /
    • 2020
  • 반려동물의 건강상태를 확인하기 위해 심박수, 호흡수의 변화를 관찰하는 것이 중요하다. 측정을 위한 웨어러블 장치를 통해 심박수를 측정하기 위해 무선 통신 기술을 이용하여 실시간으로 센서 데이터를 수집하고 그 추이를 볼 수 있도록 해야 한다. 반려동물에 장착되는 웨어러블 장치의 특성상 무거운 고용량의 배터리를 사용할 수 없다. 따라서 저전력 통신 기술인 BLE를 사용하여 실시간으로 센서 데이터를 전송하도록 하고, 이 데이터를 스마트폰에서 수집하여 실시간으로 그래프를 그리고, CSV 파일로 저장한다. 구현된 애플리케이션을 통해 센서 데이터의 변화를 직관적으로 분석할 수 있으며 차후 분석할 수 있는 데이터를 얻을 수 있었다.

  • PDF

Dose perturbation measurements during the liver treatment with internal organ motion: Mathematical modeling and Experimental simulation (호흡에 의한 내부 움직임의 영향이 있는 간에서의 실험적 선량 측정)

  • Chung, Jin-Bum;Kim, Yon-Lae;Chung, Won-Kyun;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.115-118
    • /
    • 2004
  • Respiratory motion in the thorax and abdomen is an important limiting factor in high-precision radiation therapy. The lung tumor and tumor(pancreas, stomach) in abdomen therefore are internal motion due to breathing. We will perform to measurement of dose distributions for these moving tumors. In preliminary study, we investigated displacement of moving tumor such as liver, lung tumor in abdomen with previously reported papers. With reference data, internal movements of tumor are displayed with phantom and moving control device(MCD), which appear three dimension (3-D) motion such as x, y and z axis. These devices are used to access dose delivered in tumor with and without internal motion. The MCD and phantom were used to evaluate a delivered dose under similar condition, although there are not same internal tumor motion. In future, we will obtain the exact evaluation of dose if improved in programed software of moving control device and measure precise internal motion using image modality such as fluoroscopy, simulator in based on this study.

  • PDF

A pressure sensor system for detecting driver's drowsiness based on the respiration Paper Template for the KITS Review (호흡기반 운전자 졸음 감지를 위한 압력센서 시스템)

  • Kim, Jaewoo;Park, Jaehee;Lee, Jaecheon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.2
    • /
    • pp.45-51
    • /
    • 2013
  • In this paper, a driver's drowsy detection sensor system based on the respiration is investigated. The sensor system consists of a piezoelectric pressure sensor attached at the abdominal region of the seat belt and a personal computer. The piezoelectric pressure sensor was utilized for the measurement of pressure variations induced by the movement of the driver abdomen during breathing. The signal processing software for detecting driver's drowsiness was produced using the Labview. The experiments were performed with 30 years male driver. The amplitude of the respiration at awake state was larger than one at the drowsy state. On the contrary, the respiration rate at awake state was lower than one at the drowsy state. The drowsy detection sensor system developed based on the experimental could successfully detect the driver's drowsy on real-time.

Usefulness of Radiation Treatment Planning Applied Respiration Factor for Stereotactic Body Radiation Therapy in the Lung Cancer (폐암 환자의 정위체부방사선치료 시 호흡인자를 적용한 방사선 치료계획의 유용성)

  • Shin, Sung Pil;Kim, Tae-Hyung;So, Woon Young;Back, Geum Mun
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.587-593
    • /
    • 2016
  • We are evaluated the usefulness of radiation treatment planning applied respiration factor for stereotactic body radiation therapy in the lung cancer. Four dimensional computed tomography images were obtained in 10 patients with lung cancer. The radiation treatment plans were established total lung volume according to respiration images (new method) and conventional method. We was analyzed in the lung volume, radiation absorbed dose of lung and main organs (ribs, tracheobronchus, esophagus, spinal cord) around the tumor, respectively. We were confirmed that lung volume and radiation absorbed dose of lung and main organs around the tumor deference according to applied respiration. In conclusion, radiation treatment planning applied respiration factor seems to be useful for stereotactic body radiation therapy in the lung cancer.

Determination of Respiratory Activity of Mitochondria and Submitochondrial Particles by Using Dropping Mercury Electrode (적하수은전극을 이용한 미토콘드리아 및 Submitochondrial particles의 호흡활성측정)

  • Jung, Jin;Park, Sang-Gyu;Lee, Sang-Kee;Kim, Se-Ho
    • Applied Biological Chemistry
    • /
    • v.28 no.4
    • /
    • pp.271-277
    • /
    • 1985
  • A polarograph with specially designed cell compartment usable in kinetic study of the mitochondrial respiration of a small sized sample was made, and its performance and experimental conditions were examined. An applied potential (ca-1.2V vs. SCE) which gives rise to the second step reduction of oxygen caused a considerable level of a residual current independent of oxygen, which is temporarily interpreted as the reduction current of the membrane-bound redox material(s) of mitochondria. A potential corresponding to the first slop reduction of oxygen (ca-0.4V vs SCE) did not produce the residual current. Thus, it is suggested that a measurement of oxygen concentration in a sample of mitochondria and submitochondrial particles by using dropping mercury electrode should be done with an applied potential of about -0.4V vs SCE. Consumption of oxygen by mitochondria was observed to follow practically zero order kinetics. Its rate constant exhibited the proportional relationship with the respiratory activity of mitochondria. Usefulness of tile instrument was properly demonstrated in the work on the temperature effect on the respiration of mitochondria isolated from several plant 4issues which were selected on the basis of chilling susceptivity.

  • PDF

Design and Implementation of Mobile ]Respiration Detection Diagnostic System using Ultrasound Sensing Method fficient Multicasting Environment (초음파 센싱 방식을 이용한 이동형 호흡량 측정 진단기의 설계 및 구현)

  • 김동학;김영길
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.509-515
    • /
    • 2004
  • Pulmonary function tests are widely used to diagnose and determine patients' therapy in clinic. And it was also applied in the research of the physiology and dynamics for lung disease. Among the pulmonary function tests, spirometry is the most easy and economic test. Spirometers are medical instruments that measure the instantaneous rate of volume flow of respired Bas. The mechanical spirometer was mostly used in the past. Up to the present, the most popular method of spirometer is the differential pressure technique with which change in the volume of flow are transferred to change in pressure. This kind of instrument suffers from several limitations, pressure drop, difficulty in maintenance and short period of calibration. Therefore, this study has begun to implement ultrasound spirometer, which is free of pressure loss and has wide range, focusing on the flow measurement technique and diagnostic algorithm.

A Method to Separate Respiration and Pulse Signals from BCG Sensing Data for Companion Animals

  • Kwak, Ho-Young;Chang, Jin-Wook;Kim, Soo Kyun;Song, Woo Jin;Yun, Young-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.163-170
    • /
    • 2022
  • Currently, as the number of families living with companion animals increases, the demand for information about the health status of companion animals has increased. As the demand for this increases, there is a need for a method to measure respiration and pulse in companion animals. Considering the characteristics of hairy companion animals, we want to measure respiration and pulse signals using BCG, which is different from adsorption ECG. Since this BCG method is made by mixing respiration and pulse signals into one signal, it is necessary to separate the respiration signal waveform and the pulse signal waveform from one signal waveform. In this paper, a wearable device for BCG measurement was implemented to measure the signal, and a method of separating the signal input from the BCG wearable device into a respiration signal and a pulse signal was proposed.

The Effect of Twenties Female Caffeine Addiction on Cardiorespiratory Capacity (카페인 중독이 20대 성인 여성의 심장호흡기계능력에 미치는 영향)

  • Yoon, Young-Jeoi
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.8
    • /
    • pp.197-202
    • /
    • 2020
  • In this study, we investigate the effect of twenties female caffeine addiction on cardiorespiratory capacity. For this study, we divided 35 female students at H university into caffeine addict group(n=17) and none caffeine addict group(n=18). Measure maximal oxygen uptake, maximal energy consumption and METs using Cycle Ergometer to assess cardiac capacity. Measure peak inspiratory pressure, peak inspiratory flow rate, peak inspiratory capacity, average inspiratory pressure, average inspiratory flow rate, average inspiratory capacity using Power Breathe K5 to assess respiratory capacity. As a result, cardiac capacity showed a statistically significant decrease in maximal oxgen uptake and METs compared caffeine addict group to none caffeine addict group(p<.001). respiratory capacity showed a statistically significant decrease in peak inspiratory pressure(p<.05), peak inspiratory flow rate(p<.01), average inspiratory pressure(p<.01), average inspiratory flow rate(p<.01), compared caffeine addict group to none caffeine addict group. Combining the results of the study, we could see that caffeine addiction reduces the cardiorespiratory capacity in twenties female. Therefore, it could be used as a basis date to prevent caffeine addiction for twenties female.

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.