• Title/Summary/Keyword: 호흡률법

Search Result 5, Processing Time 0.018 seconds

Respirometry for the Assessment of Organics Biodegradability in Municipal Wastewater: I. Respirometry (호흡률법에 의한 하수의 생분해 특성 평가: I. 호흡률법)

  • Kim, Dong Han;Kim, Hee Jun;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • Organics may be divided into biodegradable and nonbiodegradable fractions on the basis of biodegradability. Biodegradable organics may be subdivided into readily and slowly biodegradable fractions. As this biodegradability of organics in municipal wastewater has a great influence on the efficiency of a biological nutrient removal process, it has been assessed by respirometry. The respirometer, which consisted of a respiration chamber and a respiration cell, was used to measure the respiration rate of biomass utilizing the readily biodegradable organics. The readily biodegradable organics are about 10% of the COD in municipal wastewater. The adequate ratio of wastewater to sludge volume and the concentration of sludge are required in measuring the respiration rate due to the readily biodegradable organics. By using a biochemical oxygen demand test, the slowly biodegradable organics including biomass are estimated about 66% of COD. The soluble inert organics are about 11% of COD. On the basis of mass balance, the particulate inert organics are estimated about 13% of COD.

Estimation of Nitrifiable Nitrogen Compounds in Municipal Wastewater by Respirometry (호흡률법에 의한 하수의 질산화성 질소화합물 추정)

  • Kim, Dong Han
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.3
    • /
    • pp.295-303
    • /
    • 2007
  • Nitrogen compounds in municipal wastewater can be divided into biodegradable and nonbiodegradable fractions with biodegradability. Biodegradable nitrogen compounds can be removed through biological nitrification and denitrification processes, and nonbiodegradable nitrogen compounds affect the effluent quality of biological nutrient removal processes. The amount of nitrifiable nitrogen compounds, which are the sum of ammonia and biodegradable organic nitrogen, has been estimated by respirometry. Respirometry shows good estimation of the concentration of nitrifiable nitrogen when a synthetic sample of ammonium chloride is dosed. The estimated concentration of nitrifiable nitrogen compounds in municipal wastewater is close to ammonia concentration in municipal wastewater, but it is lower than that for the synthetic sample. If nitrogen assimilated into cell synthesis of nitrifiers and heterotrophs is considered, the total amounts of nitrifiable nitrogen compounds, which are nitrified and assimilated, could be more accurately estimated. The concentration of nitrifiable nitrogen compounds, which are biodegradable, is about 31 mg N/l, and this is 119% of ammonia and 94% of total nitrogen. Ammonia, nitrate, biodegradable organic nitrogen, and nonbiodegradable nitrogen are about 79%, 1%, 15%, and 5% of the total nitrogen in municipal wastewater, respectively.

Respirometry for the Assessment of Organics Biodegradability in Municipal Wastewater: II. Active Biomass and NUR (호흡률법에 의한 하수의 생분해 특성 평가: II. 활성미생물 및 NUR)

  • Kim, Dong Han;Kim, Gyu Dong;Chung, Tai Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.113-120
    • /
    • 2004
  • The biodegradability of organics has become essential for the design and modeling of a biological nutrient removal process. Respirometry for the batch test just with wastewater has been conducted to estimate active biomass and readily biodegradable organics in municipal wastewater simultaneously. Municipal wastewater contains significant active biomass, which is estimated about 17% of COD. Compared to the batch test seeded with sludge, the batch test just with wastewater represents a little higher readily biodegradable organics. This might be due to the different environment of the logarithmic growth of active biomass. The nitrate uptake rate test has been also performed for the estimation of the readily biodegradable organics. The nitrate uptake rate test results in a little higher readily biodegradable organics compared to the batch test seeded with sludge and similar organics compared to the batch test just with wastewater. This might be caused by the different sludge of a sequencing batch reactor process. Taking the result of the previous research into account, the readily biodegradable, slowly biodegradable, active biomass, soluble inert, and particulate inert organics are estimated about 11%, 49%, 17%, 11%, and 12% of COD, respectively.

Aeration control based on respirometry in a sequencing batch reactor (호흡률에 기반한 연속회분식반응조의 포기공정 제어)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the sequencing batch reactor process is a time-oriented system, it has advantages of the flexibility in operation for the biological nutrient removal. Because the sequencing batch reactor is operated in a batch system, respiration rate is more sensitive and obvious than in a continuous system. The variation of respiration rate in the process well represented the characteristics of biological reactions, especially nitrification. The respiration rate dropped rapidly and greatly with the completion of nitrification, and the maximum respiration rate of nitrification showed the activity of nitrifiers. This study suggested a strategy to control the aeration of the sequencing batch reactor based on respirometry. Aeration time of the optimal aerobic period required for nitrification was daily adjusted according to the dynamics of respiration rate. The aeration time was mainly correlated with influent nitrogen loadings. The anoxic period was extended through aeration control facilitating a longer endogenous denitrification reaction time. By respirometric aeration control in the sequencing batch reactor, energy saving and process performance improvement could be achieved.

Predictive aeration control based on the respirometric method in a sequencing batch reactor (연속회분식반응조에서 호흡률에 기반한 포기공정의 예측제어)

  • Kim, Donghan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.6
    • /
    • pp.481-489
    • /
    • 2019
  • As aeration is an energy-intensive process, its control has become more important to save energy and to meet strict effluent limits. In this study, predictive aeration control based on the respirometric method has been applied to the sequencing batch reactor (SBR) process. The variation of the respiration rate by nitrification was great and obvious, so it could be a very useful parameter for the predictive aeration control. The maximum respiration rate due to nitrification was about 60 mg O2/L·h and the maximum specific nitrification rate was about 7.5 mg N/g MLVSS·h. The aeration time of the following cycle of the SBR was daily adjusted in proportion to that which was previously determined based on the sudden decrease of respiration rate at the end of nitrification in the respirometer. The aeration time required for nitrification could be effectively predicted and it was closely related to influent nitrogen loadings. By the predictive aeration control the aerobic period of the SBR has been optimized, and energy saving and enhanced nitrogen removal could be obtained.