• Title/Summary/Keyword: 호재

Search Result 380, Processing Time 0.021 seconds

The Effect of Corporate Governance on Performance of Mergers and Acquisitions in KOSDAQ Market (코스닥시장에서 인수합병에 따른 성과와 소유구조)

  • Cho, Ji-Ho;Jeong, Seong-Hoon
    • The Korean Journal of Financial Management
    • /
    • v.26 no.2
    • /
    • pp.33-61
    • /
    • 2009
  • From the perspective of corporate governance, we examine the acquirers' performance of mergers and acquisitions in KOSDAQ Market. The empirical results of our study show that inside an executive shareholders and outside minor shareholders, affect acquirers' performance in M&A's : the ownership of outside minor shareholders is positively correlated with the performance of acquirers. and, the ownership of insiders, such as that of an executive shareholders, does have significant effect on the performance of M&A's. Since the current literature concludes that the improvement of corporate governance in KOSDAQ Market would enhance the shareholders' wealth, the results of our study implies that outside minor investors, as well as insiders, are playing an important role in the corporate governance.

  • PDF

A Visualization Study of Liquid Spreading on Micro/nano Textured Surfaces with Synchrotron X-ray Imaging (방사광 X-선 영상법을 활용한 마이크로/나노 구조 표면에서의 액체 퍼짐 가시화 연구)

  • Kwak, Ho Jae;Yu, Dong In;Doh, Seungwoo;Park, Hyun Sun;Kim, Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.8
    • /
    • pp.531-536
    • /
    • 2017
  • Nano/micro technology is currently applied to improve solid surface wettability, with recent research studies indicating that nanostructures can improve surface wettability in the hydrophilic direction, and liquid spreading (propagation) is generated by capillary wicking. The majority of the existing research involves qualitative analysis of the spreading phenomena, owing to the difficulty in conducting small-scale analysis (nanostructures). In this study, the droplet interfacial behavior on silicon surfaces with micro/nano/micro-nano structures is experimentally investigated. The interfacial behavior is directly visualized using synchrotron X-ray imaging (side view). The spreading phenomena occur on structured surfaces, and the liquid interface behaviors on the surfaces differ. The liquid film thickness is uniform during spreading on the microstructured surface, but not on the nano case which shows a gentle slope. These combined spreading shapes were observed on a micro-nano structured surface, and liquid propagation was enhanced when the micro- and nano-structures are combined.

A Study on Survivability of Node using Response Mechanism in Active Network Environment (액티브 네트워크 환경에서 대응 메커니즘을 이용한 노드 생존성에 관한 연구)

  • Yang, Jin-Seok;Lee, Ho-Jae;Chang, Beom-Hwan;Kim, Hyoun-Ku;Han, Young-Ju;Chung, Tai-Myoung
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.799-808
    • /
    • 2003
  • Existing security solutions such as Firewell and IDS (Intrusion Detection System) have a trouble in getting accurate detection rate about new attack and can not block interior attack. That is, existing securuty solutions have various shortcomings. Shortcomings of these security solutions can be supplemented with mechanism which guarantees an availability of systems. The mechanism which guarantees the survivability of node is various, we approachintrusion telerance using real time response mechanism. The monitoring code monitors related resources of system for survivability of vulnerable systm continuously. When realted resources exceed threshold, monitoring and response code is deployed to run. These mechanism guarantees the availability of system. We propose control mathod about resource monitoring. The monitoring code operates with this method. The response code may be resident in active node for availability or execute a job when a request is occurred. We suggest the node survivability mechanism that integrates the intrusion tolerance mechanism that complements the problems of existing security solutions. The mechanism takes asvantage of the automated service distribution supported by Active Network infrastructure instead of passive solutions. The mechanism takes advantage of the automated service distribution supported by Active Network infrastructure instead of passive system reconfiguration and patch.

Probability-based Cost Analysis for Recycling Secondary Products from Construction Waste (건설폐기물 재활용 2차 제품에 대한 확률모델 기반 비용분석)

  • Kwon, Kihyon;Kim, Do-Gyeum;Lee, Ho-Jae;Seo, Eun-Ah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.227-234
    • /
    • 2020
  • Under consideration of construction waste recycling, candidate secondary products applicable for the civil and construction areas can be reliably employed based on the recycling cost analysis. For the validation purpose, probability-based cost analyses were performed to estimate recycling cost profit considering uncertainties. When recycling construction wastes, the costs at each stage are fully dependent on target products to be adopted. To achieve commercialization of each product, its quality has to be improved with economic efficiency through accurate evaluation of input costs. Based on the probabilistic recycling cost analysis, the cost benefit for target products was estimated with waste classification cost, transportation cost to recycling treatment facilities and production cost. All necessary information on the cost analysis were collected from literature, disclosure, and existing recycling companies. In addition, a cost difference between recycled and non-recycled events was made. As a result, a probability-based recycling cost estimate for candidate secondary products was herein presented.

Malaysia in 2016: Deepening Crisis and Losing Opportunities (말레이시아 2016: 위기의 지속과 기회의 상실)

  • HWANG, In Won;KIM, Hyung Jong
    • The Southeast Asian review
    • /
    • v.27 no.1
    • /
    • pp.131-161
    • /
    • 2017
  • The political dynamics of Malaysia in 2016 should be seen as a process of losing an political opportunity mainly due to the split in opposition parties. The opportunity for political development was triggered by the ruling party in crisis. The ongoing 1Malaysia Development Berhad (1MDB) scandal involving the Prime Minister Najib Razak would have provided a favorable condition for the transfer of power. The opposition parties have however failed to utilize the chance that has arisen since the general elections in 2008 and 2013 due to the chronic problem of disunity. It can be seen as distortions of political development referring to a phenomenon in which a chance for regime change formed by the crisis in authoritarian regime is distorted by internal conflicts among opposition parties. Malaysia's political turmoil seemed to paralyze its economy while foreign policy was used as a tool for domestic politics. It was reported that the key economic indicator have worsen including exports and budget deficit. The ringgit had dropped to its lowest level since the economic crisis in 1997-98 which was mainly attributed to diminishing credibility on the Najib's administration. Najib's political struggle has also impeded Malaysia's foreign policy which has attempt to embrace China and the Rohingya issue. The chance to manage key risks would be diminished if oppositions' disunity continues as there is speculation that the general election could be held in 2017.

Investigation for Developing 3D Concrete Printing Apparatus for Underwater Application (수중적층용 3D 콘크리트 프린팅 장비 개발에 대한 연구)

  • Hwang, Jun Pil;Lee, Hojae;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.10-21
    • /
    • 2021
  • Recently, the demand for atypical structures with functions and sculptural beauty is increasing in the construction industry. Existing mold-based structure production methods have many advantages, but building complex atypical structures represents limitations due to the cost and technical characteristics. Production methods using molding are suitable for mass production systems, but production cost, construction period, construction cost, and environmental pollution can occur in small quantity batch production. The recent trend in the construction industry calls for new construction methods of customized small quantity batch production methods that can produce various types of sophisticated structures. In addition to the economic effects of developing related technologies of 3D Concrete Printers (3DCP), it can enhance national image through the image of future technology, the international status of the construction civil engineering industry, self-reliance, and technology export. Until now, 3DCP technology has been carried out in producing and utilizing residential houses, structures, etc., on land or manufacturing on land and installing them underwater. The final purpose of this research project is to produce marine structures by directly printing various marine structures underwater with 3DCP equipment. Compared to current underwater structure construction techniques, constructing structures directly underwater using 3DCP equipment has the following advantages: 1) cost reduction effects: 2) reduction of construct time, 3) ease of manufacturing amorphous underwater structures, 4) disaster prevention effects. The core element technology of the 3DCP equipment is to extrude the transferred composite materials at a constant quantitative speed and control the printing flow of the materials smoothly while printing the output. In this study, the extruding module of the 3DCP equipment operates underwater while developing an extruding module that can control the printing flow of the material while extruding it at a constant quantitative speed and minimizing the external force that can occur during underwater printing. The research on the development of 3DCP equipment for printing concrete structures underwater and the preliminary experiment of printing concrete structures using high viscosity low-flow concrete composite materials is explained.

Characteristics Evaluation of Solidifying Agent for Disposal of Radioactive Wastes Using Waste Concrete Powder (원전 폐콘크리트의 방사성 폐기물 처분용 고화제로의 활용을 위한 고화체 특성 평가)

  • Seo, Eun-A;Lee, Ho-Jae;Kwon, Ki-Hyon;Kim, Do-Gyeum
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.451-459
    • /
    • 2021
  • The purpose of this study is to evaluate the performance of a solidifying agent for recycling the fine powder separated from the nuclear power plant decommissioned concrete as a solidifying agent(SA) for radioactive waste. In order to evaluate the performance of the solidifying agent, a powder simulating the fine powder of waste concrete separated from the dismantled concrete of a nuclear power plant was produced, and the main variables were the type of binder and the replacement ratio of zeolite. The solidifying agent was evaluated for fluidity performance, compressive strength, and leaching resistance to non-radioactive cesium. The compressive strength of SA increased as the zeolite replacement ratio increased, and the SA containing 5% or more of zeolite showed a compressive strength that was 1.4 to 1.7 times higher than the acceptance criteria. The cesium leaching index of all specimens was 6 or higher, satisfying the acceptance criteria, and the leaching index of SA was 1.47~1.63 times higher than that of OPC. In particular, the average leaching index after 28 days of the 5% zeolite-substituted solidifying agent was 9.15, which was improved by about 6.4% compared to OPC, and it was confirmed that the zeolite was effective in improving the leaching resistance to cesium ions by showing stable performance over the entire period.

Effects of Fine Aggregate Size on Penetration Performances of SSPM (잔골재의 입도분포가 SSPM의 침투성능에 미치는 영향)

  • Yoon, Hyun-Kwang;Youn, Da-Ae;Lee, Chan-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.25-31
    • /
    • 2019
  • This study was conducted to evaluate the penetration performance of the Silane Surface Protection Material (SSPM) penetrating the micro pore of concrete surface. The results was indicated microstructure, porosity and penetration depth of applied SSPM. Silica sand and conventional sand were used as fine aggregate in mortar. And liquid and cream types SSPM were used. The amounts of SPM were applied the 127, 255, 382, 510 g/m2 on the surface of mortar. The penetration depth specimens were made with $100{\times}30mm$ in according with KS F 4930. Penetration depth was evaluated according to KS F 4930, divide specimen and then spraying with water in cross section of specimens, and measure the depth of the non-wetted area. The microstructure result of mortar applied SSPM, it was obtained liquid and cream SSPM in mortar. The porosity results of SSPM application specimens were improved with than that of plain specimens. Test results indicated that the penetration depth of SPM were improved with increasing in amounts of SSPM. As a result of test, application of SSPM to concrete surface, it will improve durability.

Experimental Study for Evaluating Early Age Shrinkage of Mortar for 3D Printing (3D 프린팅용 모르타르의 초기재령 수축거동 평가를 위한 실험적 연구)

  • Seo, Eun-A;Yang, Keun-Hyeok;Lee, Ho-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.76-83
    • /
    • 2022
  • Since the 3D printing mortar is exposed to the atmosphere immediately after printing, moisture is largely evaporated from the surface of the layer. The evaporation of moisture on the surface of the layer greatly causes drying shrinkage and increases the risk of cracking and damage to the structure due to drying shrinkage. This study experimentally evaluated the shrinkage behavior of the initial age using the mortar used for 3D printing. The change in shrinkage was evaluated by comparing the shrinkage of the specimen cured by the sealing method and the atmospheric exposure method. In addition, compared with the case where type 1 cement was used 100%, the shrinkage amount was evaluated when 20% of fly ash was replaced and 10% of silica fume was used. In particular, the effect of three chemical admixtures applied using 3D printing on shrinkage was evaluated experimentally. When fly ash and silica fume were used, the shrinkage amount increased by 60 - 110% compared to the case when type 1 cement was used. The application of viscosity modifiers and shrinkage reducers reduced the shrinkage by at least 18% and at most 70% depending on the curing conditions. The temperature of the specimen temporarily decreased to 15 ℃ at the beginning of curing, and the correlation between the internal temperature of the specimen and the shrinkage behavior was observed.

Evaluation of Rheological Properties and Acceptance Criteria of Solidifying Agents for Radioactive Waste Disposal Using Waste Concrete Powder (폐콘크리트를 재활용한 방사성 폐기물용 고화제의 레올로지 특성 및 인수기준 특성평가)

  • Seo, Eun-A;Kim, Do-Gyeum;Lee, Ho-Jea
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.276-284
    • /
    • 2022
  • In this study, performance evaluation and rheological characteristics were analyzed for recycling the fine powder of nuclear power plant dismantled waste concrete as a solidifying agent for radioactive waste disposal. The radioactive concrete fine powder was used to prepare a simulated sample, and the test specimen was prepared using Di-water, CoCl2, and 1 mol CsCl aqueous solution as mixing water. Regardless of the aggregate mixing ratio and the type of mixing water, it satisfies the performance standard of 3.45 MPa for compressive strength at 28 days of age. All specimens satisfied the criteria for submersion strength, and the thermal cycle compressive strength satisfies the criteria for all specimens except Plain-50. As a result of evaluating the rheological properties of the solidifying agent, it was found that the increase in the aggregate mixing rate decreased the yield stress and plastic viscosity. The leaching index for cobalt and cesium of all specimens was 6 or higher, which satisfies the standard. In order to secure the stable performance of the solidifying agent, it is considered effective to use 40 % or less of the aggregate component in the solidifying agent.