• Title/Summary/Keyword: 호우특성

Search Result 901, Processing Time 0.023 seconds

Development for rainfall classification based on local flood vulnerability using entropy weight in Seoul metropolitan area (엔트로피 가중치를 활용한 지역별 홍수취약도 기반의 서울지역 강우기준 산정기법)

  • Lee, Seonmi;Choi, Youngje;Lee, Eunkyung;Ji, Jungwon;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.267-278
    • /
    • 2022
  • Recently Flood damage volume has increased as heavy rain has frequently occurred. Especially urban areas are a vulnerability to flooding damage because of densely concentrated population and property. A local government is preparing to mitigate flood damage through the heavy rain warning issued by Korea Meteorological Administration. This warning classification is identical for a national scale. However, Seoul has 25 administrative districts with different regional characteristics such as climate, topography, disaster prevention state, and flood damage severity. This study considered the regional characteristics of 25 administrative districts to analyze the flood vulnerability using entropy weight and Euclidean distance. The rainfall classification was derived based on probability rainfall and flood damage rainfall that occurred in the past. The result shows the step 2 and step 4 of rainfall classification was not significantly different from the heavy rain classification of the Korea Meteorological Administration. The flood vulnerability is high with high climate exposure and low adaptability to climate change, and the rainfall classification is low in the northern region of Seoul. It is possible to preemptively respond to floods in the northern region of Seoul based on relatively low rainfall classification. In the future, we plan to review the applicability of rainfall forecast data using the rainfall classification of results from this study. These results will contribute to research for preemptive flood response measures.

자연재해 위험관리(하)

  • Kim, Gwang-Seop
    • 방재와보험
    • /
    • s.114
    • /
    • pp.46-53
    • /
    • 2006
  • 한국화재보험협회에서는 효율적인 재난 대책과 지구 노력에 부응하고자 "자연재해 위험관리"를 발간, 이를 2회에 걸쳐 소개하고자 하며. 지난 호에 게제된 자연재해 피해현황 및 태풍에 이어 이번 호에서는 호우 및 홍수, 급경사지, 해일에 관한 특성과 대책에 대하여 살펴본다.

  • PDF

Comparison of probability distributions to analyze the number of occurrence of torrential rainfall events (집중호우사상의 발생횟수 분석을 위한 확률분포의 비교)

  • Kim, Sang Ug;Kim, Hyeung Bae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.481-493
    • /
    • 2016
  • The statistical analysis to the torrential rainfall data that is defined as a rainfall amount more than 80 mm/day is performed with Daegu and Busan rainfall data which is collected during 384 months. The number of occurrence of the torrential rainfall events can be simulated usually using Poisson distribution. However, the Poisson distribution can be frequently failed to simulate the statistical characteristics of the observed value when the observed data is zero-inflated. Therefore, in this study, Generalized Poisson distribution (GPD), Zero-Inflated Poisson distribution (ZIP), Zero-Inflated Generalized Poisson distribution (ZIGP), and Bayesian ZIGP model were used to resolve the zero-inflated problem in the torrential rainfall data. Especially, in Bayesian ZIGP model, a informative prior distribution was used to increase the accuracy of that model. Finally, it was suggested that POI and GPD model should be discouraged to fit the frequency of the torrential rainfall data. Also, Bayesian ZIGP model using informative prior provided the most accurate results. Additionally, it was recommended that ZIP model could be alternative choice on the practical aspect since the Bayesian approach of this study was considerably complex.

Development Strategy of Smart Urban Flood Management System based on High-Resolution Hydrologic Radar (고정밀 수문레이더 기반 스마트 도시홍수 관리시스템 개발방안)

  • YU, Wan-Sik;HWANG, Eui-Ho;CHAE, Hyo-Sok;KIM, Dae-Sun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.191-201
    • /
    • 2018
  • Recently, the frequency of heavy rainfall is increasing due to the effects of climate change, and heavy rainfall in urban areas has an unexpected and local characteristic. Floods caused by localized heavy rains in urban areas occur rapidly and frequently, so that life and property damage is also increasing. It is crucial how fast and precise observations can be made on successful flood management in urban areas. Local heavy rainfall is predominant in low-level storms, and the present large-scale radars are vulnerable to low-level rainfall detection and observations. Therefore, it is necessary to introduce a new urban flood forecasting system to minimize urban flood damage by upgrading the urban flood response system and improving observation and forecasting accuracy by quickly observing and predicting the local storm in urban areas. Currently, the WHAP (Water Hazard Information Platform) Project is promoting the goal of securing new concept water disaster response technology by linking high resolution hydrological information with rainfall prediction and urban flood model. In the WHAP Project, local rainfall detection and prediction, urban flood prediction and operation technology are being developed based on high-resolution small radar for observing the local rainfall. This study is expected to provide more accurate and detailed urban flood warning system by enabling high-resolution observation of urban areas.

Analysis of Rainfall Characteristics and Landslides at the West Side Area of Gangwon Province (강원 영서지역 산사태 및 강우특성 분석)

  • Yoo, Namjae;Yoon, Daehee;Um, Jaekyung;Kim, Donggun;Park, Byungsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.75-82
    • /
    • 2012
  • This paper is the results of analysis for the causes and characteristics of landslide according to heavy rain occurred in west area of Gangwon province which is affected by typhoon such as Ewiniar and Bilis in 2006. West side of Gangwon province is topographically weak for the landslide and debris flow since it is covered by soil of weathered rock such as Gneiss and Granite. From the results of analysis for the rainfall characteristics, it was found that landslide occurrence is closely related to the accumulated rainfall amount less than 3 days. Furthermore, it was found that regional difference of occurrence frequency is effected by 1-hour maximum rainfall intensity. From the results of analysis for the landslide data of 860 locations occurred in west side, it was shown that failure mode was changed from transition slide to liquidity slide. Occurrence frequency was high at the slope angle of $20{\sim}30^{\circ}$ slope length of 11~20, and slope width of 6~10. Landslide of west side is the typical landslide of Gneiss and Granite and the type of small scale which has narrow slope width.