• Title/Summary/Keyword: 호소수 체류시간

Search Result 16, Processing Time 0.026 seconds

Evaluation on the nutrient concentration changes along the flow path of a free surface flow constructed wetland in agricultural area (농업지역에 조성된 자유수면형 인공습지의 유로에 따른 영양염류의 변화 평가)

  • Mercado, Jean Margaret R.;Maniquiz-Redillas, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • In this study, the nutrient concentration changes along the hydrologic flow path of a free water surface flow constructed wetland (CW) treating agricultural stream runoff was investigated. Dry sampling was performed from April 2009 to November 2011 at five locations representing each treatment units of the CW. Grab water samples were analyzed for nitrogen forms such as total nitrogen (TN), total Kjeldahl nitrogen, nitrate, and ammonium; and phosphorus forms including total phosphorus (TP) and phosphate. Findings revealed that the physical properties such as temperature, dissolved oxygen and pH affected the TP retention in the CW. High nutrient reduction was observed after passing the first sedimentation zone indicating the importance of settling process in the retention of nutrients. However, it was until the 85% of the length of the CW where nutrient retention was greatest indicating the deposition of nutrients at the alternating shallow and deep marshes. TN and TP concentration seemed to increase at the final sedimentation zone (FSZ) suggesting a possible nutrient source in this segment of the CW. It was therefore recommended to reduce or possibly remove the FSZ in the CW for an optimum performance, smaller spatial allocation and lesser construction expenses for similar systems.

Analysis of Water Quality Characteristics Using Simulated Long-Term Runoff by HEC-HMS Model and EFDC Model (HEC-HMS 모형에 의한 장기유출량과 EFDC 모형을 이용한 호소 내 수질특성 분석)

  • Kim, Yon-Soo;Kim, Soo-Jun;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.707-720
    • /
    • 2011
  • For the lake case, the detention phenomenon of water body occurs and stays for a long time. Especially, following the layer of water depth direction, the lake body and water quality problems are different from the water quality of river. So according to time, the stream and water quality can be simulated by the 3-Dimensional Model, which can divide water layer for reservoir or lake. The water quality simulation result will become more reliability. For this study, the 3-Dimension Model - EFDC was used to simulate water quality of Unam reservoir in the Sumjin Dam. The HEC-GeoHMS and HEC-HMS Rainfall - Runoff Model based on GIS were used to estimate long-term runoff, and input data was constructed to the observed water level, meteorological data, water temperature, T-N and T-P. In order to apply the EFDC model, water depth was divided into 3 layers and 5,634 grids were extracted. After constructing the grid net, the water quality change of Unam reservoir in time and space was simulated. Overall, long term runoff simulation reflected the actual observed runoff well, through the water quality simulation, according to the pollution factors, the behavior characteristics can be checked, and the simulated water quality can be properly reflected. The function of EFDC has been confirmed, which water quality can be properly simulated. In the near future, to establish countermeasures for Intake Facilities of Watershed and Management, this support which some basic tools can be applied is in expectation.

Effects of Salix subfragilis communities on water quality in Namgang Dam reservoir (남강댐 선버들 군락이 수질에 미치는 영향)

  • Kim, Ki Heung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1065-1076
    • /
    • 2022
  • The purpose of this study was to investigate the effect of the expansion and withering of Salix subfragilis communities on the water quality in Namgang Dam reservoir. The distribution area of the Salix subfragilis communities was 0.12 km2 in 2003 for the first time, but it was 3.58 km2 in 2019, which has increased rapidly by about 30 times in 16 years. However, in 2013, the distribution area has decreased by 0.17 km2 due to long-term immersion in high turbidity, and self-thinning in Salix subfragilis communities. The lake characteristics of reservoir showed a combination of lake type and river type in terms of average water depth, watershed area/lake surface area ratio, water residence time, flushing rate, and stratification. From the result of analyzing long-term changes in lake water quality, COD, TP, and chlorophyll-a in Salix subfragilis communities were significantly larger than those in the three points located in the central part of reservoir. In particular, the fact that the value of chlorophyll-a showed the maximum value in winter rather than summer, unlike the trend of the three points in the Namgang Dam water quality monitoring network, is thought to have occurred internally rather than externally. It can be estimated that one cause of this deterioration of the water quality in Namgang Dam reservoir is the huge amount of nutrients generated in the decomposition process of by-products such as fallen leaves, branches and withered trees in Salix subfragilis communities.

Effect of turbidity current on organic carbon cycle in Daecheong reservoir (탁수가 대청호 유기탄소 순환에 미치는 영향)

  • Dong Min Kim;Se Woong Chung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.148-148
    • /
    • 2023
  • 산업 고도화로 인하여 복잡하고 다양한 유기물의 사용량이 증가하였으며, 공공수역 내 새로운 오염물질이 유입됨에 따라 생화학적 산소요구량(BOD) 중심의 수질평가에 한계를 나타내었다. 이후 난분해성 물질을 고려한 유기물관리 정책과 총량관리의 필요성이 제기되었고 국내 하천과 호소에서는 총 유기탄소(TOC)를 유기물 관리지표로 설정하였다. 그러나 부영양 하천과 호소에서 TOC는 외부 부하뿐만아니라 식물플랑크톤의 과잉성장에 의해 증가할 수 있는 항목이므로 TOC 관리정책 추진을 위해서는 유기물의 기원에 대한 파악이 필요하다. 한편, 우리나라와 같이 몬순 기후대에 속한 댐 저수지의 경우 강우시 유입하는 탁수에 의해 다량의 유기물과 인이 유입되기도 하지만 식물플랑크톤의 제한요인 중 광량에 많은 영향을 미친다. 식물플랑크톤의 광합성은 수체 내 유기탄소 내부생성에 매우 중요한 요소이나 점 단위의 실험적 방법을 활용한 유기탄소 순환 해석은 저수지의 시·공간적인 변동성을 고려하기에 한계가 있다. 본 연구의 목적은 금강 수계 최대 상수원인 대청호를 대상으로 3차원 수리-수질 모델을 적용하여 유기탄소 성분 별 유입과 유출, 내부생성 및 소멸량을 평가하고 탁수가 저수지에서의 유기탄소 순환에 미치는 영향을 분석하는데 있다. 유기탄소 물질수지 해석을 위해 AEM3D 모델을 사용하였으며 2018년을 대상으로 입력자료를 구축한 후 보정 및 검정을 수행하였다. 모델은 유기탄소를 입자성, 용존성, 그리고 난분해성과 생분해성으로 구분하여 모의하며 유기물질 성상별 실험결과를 이용하여 입력자료를 구축하였으며 유기탄소순환 해석을 위해 4가지의 탄소성분과 조류 세포 내 탄소의 질량 변화율을 계산하였다. 이를 위해 외부 유입·유출부하율, 수체 내 생성(일차생산, 재부상, 퇴적물과 수체 간 확산) 및 소멸률(POC 및 조류 침강, DOC 무기화, 탈질)을 고려하였으며 탁수의 영향을 분석하기 위해 탁수 포함여부 시나리오를 구성하고 유기탄소 생성 및 소멸기작별 변동성을 비교 분석하였다. 모델은 2018년의 물수지를 적절히 재현하였으며 저수지의 수온 및 탁도 성층구조를 잘 재현해내면서 전반적인 수질을 적절하게 모의하였다. 탁수를 고려하였을 시 연간 TOC 부하량 중 내부기원 부하량은 56% 수준이였으나 탁수를 배제한 경우 내부기원 부하량은 82%로 나타났다. 특히, 연평균 Chl-a 농도가 44~48% 차이가 발생하면서 1차생산량이 약 4배가량 증가하였다. 몬순지역에서의 탁수는 체류시간이 긴 성층 저수지에서 식물플랑크톤 성장제어에 큰 영향을 미쳤으며 전반적인 유기탄소 순환을 해석하는데 있어 매우 중요한 인자로 작용하였다.

  • PDF

Global Occurrence of Harmful Cyanobacterial Blooms and N, P-limitation Strategy for Bloom Control (유해 남조류의 세계적 발생현황 및 녹조제어를 위한 질소와 인-제한 전략)

  • Ahn, Chi-Yong;Lee, Chang Soo;Choi, Jae Woo;Lee, Sanghyup;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Increased harmful algal blooms by cyanobacteria are threatening public health and limiting human activities related with freshwater ecosystems. Phosphorus (P) has long been suggested as a critical nutrient for cyanobacterial bloom through field research in Canada during the 1970s, proposing a P-based freshwater management guideline. However, recently, nitrogen (N) has also been highlighted as an impacting nutrient on cyanobacterial harmful algal blooms (CyanoHABs). Due to the intensive and frequent observation of Microcystis, this kind of paradigm shift from P limitation to season-dependent N or P limitation has an important implication for a dual nutrient management strategy in eutrophic freshwaters. Through recent international researches, general strategies to control CyanoHABs in lakes and reservoirs are as follows: a dual nutrient (N & P) reduction, wastewater collection and treatment, pre-treatment of influent water in buffer zones, dredging of sediment, reduction of residence time, algal collection, and precipitation and flocculation of cyanobacteria. In addition, sustainable and integrative freshwater algae management should be carried out, based on the ecological aspect, because cyanobacteria are not the target organism to be eradicated, but an essential microbial member in the freshwater ecosystem.

Spatial and Temporal Distribution of Zooplankton Communities in Lake Paldang (팔당호 동물플랑크톤 군집의 시공간적 분포)

  • Sim, Youn-Bo;Jeong, Hyun-Gi;Im, Jong-Kwon;Youn, Seok-Jea;Byun, Myeong-Seop;Yoo, Soon-Ju
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.287-298
    • /
    • 2018
  • The zooplankton community and environmental factor were investigated on a weekly basis from March to November 2015 in Lake Paldang, Korea. The seasonal succession of zooplankton community structure was influenced by hydraulic and hydrological factors such as inflow, outflow and rainfall. However, the hydraulic retention time in 2015 (16.3 day) was affected by the periods of water shortage that had continued since 2014 and increased substantially compared to 2013 (7.3 day). Therefore, the inflow and outflow discharge were decreased, and the water quality (COD, BOD, TOC, TP, Chl-a) of Lake Paldang (St.1) was the same characteristics as the river type Bukhan river (St.3), compared with the lake type Namhan river (St.2) and Gyeongan stream (St.4). Zooplankton community dominated by rotifers (Keratella cochlearis, Synchaeta oblonga) in spring (March to May). However, Copepod (Nauplius) and Cladoceran (Bosmina longirostris) dominated in St.4. In summer (June to August), there was a few strong rainfall event and the highest number of individuals dominated by Keratella cochlearis (Rotifera) and Difflugia corona (Protozoa) were shown during the study period. In autumn (October to November), the water temperature was decreased with decrease in the total number of individuals showing Nauplius (Copepoda) as the dominant species. As a result of the statistical analysis about zooplankton variation in environmental factors, the continuous periods of water shortage increased the hydraulic retention time and showed different characteristic for each site. St.1, St.3 and St.2, St.4 are shown in the same group (p<0.05), showing the each characteristics of river type and lake type. Therefore, the water quality of catchment area and distribution of zooplankton community would be attributed to hydraulic and hydrological factors.