• Title/Summary/Keyword: 호빙

Search Result 12, Processing Time 0.033 seconds

The Development of Decelerating Motor of Electronic Power Steering (EPS 감속 모터 개발)

  • Lee, Jeong-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.2
    • /
    • pp.27-34
    • /
    • 2011
  • This study is making a product for the development of one process worm wheel of making a shape for gear for worm wheel without hobbing manufacturing process. Because of removing a hobbing process, plastic worm wheel for increased productivity and equivalent quality is produced in the result. As the result, this product is selling to Hyundai Mobis, Mando, TRW, KOYO/NSK/Showa(Japan), Delphai(America). The core technology and different strategy are as follows. The technology protection for molding of worm whee is currently patent process "Molding process of helical gear(No. 10-2008-0105908). Further patent procedure for "molding system for positioning decision of inserting boss is currently prepared. As gear molding procedure in hobbing machine without gear machining procedure, most of all, core development technology which is making a gear tooth is main topic. So that, in case of currently developed worm wheel, because core and mold base are not developed in the first procedure, gear is machining in hobbing M/C as the second procedure. In the later, patent for mold base structure will be prepared in this study results.

A Study on the Manufacturing Cold Forging Dies by Cold Hobbing (콜드호빙에 의한 냉간단조용 금형제작에 관한 연구)

  • Yoo, Heonil;Kim, Sei-Hwan;Seo, Hee-Kang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.594-603
    • /
    • 1996
  • It has been known that the life time of cold forging dies is shorten by the cracks and wear produced during the operation. Thus it is required to mak the same new one too often, At this time of making new ont the cutting work and electical discharge machining were mormally used. But the precision of product is declined in every times of making the mew dies due to the diffefence in dimensional accuracy arised from the electical discharge machining. Especially it can't meet the delivery date because the production was delayed for making another die. Furthemore it has the problem of increasing the production cost. Therfore inthis study we tried to solve these problems using the hobbing method instead of electical discharge machining.

An Evaluation of Bending Fatigue Strength for Cold Forged Bevel Gear (냉간단조 베벨기어의 굽힘피로강도 평가)

  • 김재훈;사정우;김덕회;이상연
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • Gears are the most commonly used parts in automotive and industrial applications. One of most common modes of gear failures is tooth breakage, which is usually produced by the bending fatigue failure. It is important to manufacture the gears which can withstand the applied stresses in view of safety and economic requirement. This paper deals with bending fatigue strength for cold forged bevel gear. Especially, to compare fatigue characteristics for manufacturing processes difference, bending fatigue tests of bevel gears made by three different processes respectively. Results indicate that the fatigue strength of bevel gear is improved by cold forging process. Intergranular fracture is found on fatigue fracture surface, and dimples are observed on final fracture surface. The fatigue failure cannot be considered as a deterministic quantity, but must be characterized statistically. This study proposes a method to estimate bending fatigue lift of the bevel gear using the probability-load-life and Weibull analysis.

  • PDF

A Research on the Life Span extension of Die Block in Cold Forging Die (냉간단조금형에서 다이블록의 수명연장에 관한 연구)

  • Kim, Sei-Hwan;Choi, Kye-Kwang
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.337-340
    • /
    • 2007
  • 냉간단조금형(Cold Forging Die)의 다이블록(Dieblock)을 제작하는 방법 중의 하나로, 다이블록 제작용 재료를 면가공 하여 다이블록 상면(上面)을 마스터펀치(Master Punch)인 호브(Hob)로 압입(Indentaion) 시켜 절삭가공((Cutting Work)이 아닌 다이호빙(Die Hobbing) 방법으로 임프레션(Impression)을 성형하여 제작하고 있다. 이 방법에 의하여 다이블록의 재료를 합금공구강(Alloy Tool Steel)인 SKD11을 사용하여 제작하고, 스테인리스판(Stainless Sheet Metal)을 제품 재료로 하여 냉간단조가공(Cold Forging Work)을 하였더니 6,000 스트로크(Stroke)에서 금형수명(Die Life)을 다 하였다. 본 논문에서는 다이블록 재료를 고속도공구강(High Speed Tool Steel)인 SKH51로 교체 제작하고, 탄소강(Carbon Steel)인 S45C를 제품 재료로 하여 냉간단조가공을 수행 하였더니 21,000 스트로크에서 금형수명을 다하고 종료 되어 종래의 방법과 비교 검토 하였을 때 350%의 금형수명 연장 효과를 얻게 되었다.

  • PDF

Development of Jig Type Chuck for Roundness Improvement in a Machining of High Stage Speed Gear (고단속 기어의 가공 시 진원도 향상을 위한 지그척 개발)

  • Kim, Nam-Kyung;Bae, Kang-Yul;Kim, Nam-Hoon;Jang, Jeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.20-25
    • /
    • 2016
  • Recently, the requirements for high precision and efficiency machining are gradually increased to raise international competitiveness at the industrial fields of automotive and gears. This trend had made effects on the industrial fields in Korea and which needs further studying of high accuracy and efficiency machining. This study is to investigate the effects of Jig type chuck for roundness improvement in CNC turning machining of high stage speed gear. After hobbing machining, Dimensional change before and after heat treatment was very largely generated. In order to solve this problem was to develop a jig type chuck. After the heat treatment, the operation of the chuck which was the most distinguished equipment among Jig type chuck(0.006mm), Scroll type chuck(0.05mm) and Bolt type chuck(0.04mm). Therefore, Jig type chuck was satisfied the requirement from the actual field(0.02mm).

An Evaluation of Skiving Cutting Characteristics of TiCN PACVD Coating Caribide Hob (TiCN PACVD코팅 초경호브의 Skiving절삭특성 평가)

  • Cheon, Jong-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.471-477
    • /
    • 2012
  • SCM420 steel tempered after performing gear hove PACVD carbide coating on the surface after the cutting surface hardness was high. Difficult-to-cut, without coating is classified as mild as large, including materials like mild, high strength that improves tool life and productivity have limited availability. Drive to improve it in the TiCN-coated carbide call for war to the finish coating on cutting a hob skiving good workability, tool wear less, 2.5-fold increase in tool life results were obtained. Experiments using CNC Skiving hobbing machine with wet cutting conditions, cutting speed and feed rate to apply a variety of the tool wear and surface roughness data were obtained. Results from condition 2 (V = 200m/min F = 0.7mm/rev) cutting speed feed mark the cutting surface microstructure and surface roughness Rmax $4.7{\mu}m$(Ra $1.19{\mu}m$) of the data was obtained.

A Study on the Helical Gear Forming by Cold Extrusion (냉간 압출에 의한 헬리컬 기어의 제조에 관한 연구)

  • 최재찬;조해용;권혁홍;한진철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.127-138
    • /
    • 1991
  • A gear forming method by cold extrusion and an analytical method with its numerical solution program based on the upper bound method were developed. In the analysis the involute curve was as a shape of die and the upper bound method was used to calculate energy dissipation rate. By this method the power requirement and optimum conditions necessary for extruding helical(spur) gear were successfully calculated. These numerical solutions are in good agreement with experimental data. In the experiment, 4-6 class helical gear of KS standard for automobile transmission was successfully manufactured.

A Research on the Life Span extension of Die Block in Cold Forging Die (냉간단조금형에서 다이블록의 수명연장에 관한 연구)

  • Kim, Sei-Hwan;Choi, Kye-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.281-285
    • /
    • 2008
  • Die hobbing is one of the dieblock manufacturing methods of cold forging die, which makes the upper side of dieblock indented using master punch, hobb to produce impression not using cutting work. SKD11, alloy tool steel was used as the material of dieblock and stainless sheet metal was used as product material in cold forging work. The life span of the die was 6,000 strokes. In this research, the material of dieblock was changed into SKH51, the high speed tool steel and the product material was S45C, the carbon steel in the cold forging work. The life span of the die was 21,000 strokes, which is 350% of the life span of the die using the former method.