• Title/Summary/Keyword: 형질전환식물

Search Result 557, Processing Time 0.028 seconds

Organ Specific Expression of the nos-NPT II Gene in Transgenic Hybrid Poplar (형질 전환된 포플러에 대한 nos-NPT II 유전자의 기관별 발현 특성)

  • Chun, Young Woo;Klopfenstein, Ned B.
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.1
    • /
    • pp.77-86
    • /
    • 1995
  • To effectively modify tree function with genetic engineering, transgenes must be expressed at the proper level in the appropriate tissues at suitable developmental stages. Toward understanding the spatial and temporal expression of transgenes in woody plants, transgene expression was evaluated in three greenhouse-grown, transgenic lines of Populus alba ${\times}$ P. grandidentata hybrid clone 'Hansen'. All transgenic poplar lines possess constructs containing the bacterial nopaline synthase(nos) promoter linked to a neomycin phosphotransferase II(NPT II) selectable marker gene. In addition, each transgenic poplar line contains one of the following gene constructs : 1) a wound-inducible potato proteinase inhibitor II (pin2) promoter linked to a chloramphenicol acetyltransferase(CAT) reporter gene. 2) a nos promoter linked to a PIN2 structural gene : or 3) a Cauliflower Mosaic Virus 35s promoter linked to a PIN2 structural gene. Polymerase chain reaction(PCR) was used to verify the presence of foreign genes in the poplar genome. Enzyme-linked immunosorbent assays(ELISAs) were used to evaluate organ specific expression of the nos-NPT II construct. NPT II expression was detected in leaves, petioles, stems, and roots of transgenic poplar, thereby indicating that the nos promoter is potentially effective for general constitutive expression of transgenes. NPT expression varied among transgenic poplar lines and among organs for one transgenic line, Tr15. With Tr15, NPT II levels were highest in older leaves and petioles. These results indicate that screening of several transgenic lines may be required to identify lines with optimal transgene expression.

  • PDF

Investigation of Transformation Efficiency of Rice Using Agrobacterium tumefaciens and High Transformation of GPAT (glycerol-3-phosphate acyltransferase) Gene Relative to Chilling Tolerance (Agrobacterium tumefaciens를 이용한 벼의 형질전환 효율의 검토 및 내한성 관련 GPAT (glycerol-3-phosphate acyltransferase) 유전자의 형질전환)

  • Seo, Mi-Suk;Bae, Chang-Hyu;Choi, Dae-Ock;Rhim, Seong-Lyul;Seo, Suk-Chul;Song, Pill-Soon;Lee, Hyo-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • This study has been focused on improving transformation efficiency of rice using Agrobacterium tumefaciens. We have demonstrated the effect of this system when the GPAT gene related to the cold-resistance was transferred by Agrobacterium tumefaciens in rice. Transformation conditions were modified using intron $\beta$-glucuronidase (GUS) expression as a reporter gene in the rice. In this study, mature seed-derived calli of rice (Oruza sativa L. cv. Dongjin) were pre-cultured for 3 days and then infected with Agrobacterium. When this infected calli were cultured in the dark for 10 days on co-cu]lure medium containing 50 mg/L of CaCl$_2$, 30 mg/L of acetosyringone, 2 mg/L of 2,4-D, 120 mg/L of betaine, high GUS expression was observed. In the present transformation system, the efficiency of transformation of GPAT gene was about 54%. Stable integration of GPAT gene into chromosomal DNA was proven by southern blot analysis of genomic DNA isolated from T$_{0}$ progenies. The progenies (T1 generation) derived from primary transformant of 5 lines were segregated with a 3 (resistant) : 1 (sensitive ratio) in medium containing hygromycin. This high frequency transformation system can be used as a useful tool in transformation of another monocotyledon.n.

Adenosine Deaminase Gene: Possible Selectable Marker for Tobacco Transformation (연초의 형질전환을 위한 새로운 표지유전자로서 Mouse Adenosine Deaminase 유전자의 이용가능성)

  • 양덕춘;한성수;윤의수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.4
    • /
    • pp.235-240
    • /
    • 1995
  • The development of selectable markers for transformation has been a major factor in the successful genetic manipulation of plant. We established a new selectable marker system for tobacco transformation using chimeric adenosine deaminase (ADA) gene, which confers resistance to cytotoxic adenosine analogues, 9-$\beta$-D-arabinofuranosyl adenine(Ara-A) and cordycepin. The transformants with the chimeric ADA gene in tobacco grew in the presence of normally lethal level of cytotoxic adenosine analogues, 100 $\mu$M Ara-A and 50 $\mu$M cordycepin. We successfully distinguished transformed shoot from non-transformed shoot on the same selectable media with cytotoxic adenosine analogues. In this selectable media, we were able to select seeds with/ without ADA gene from transgenic tobacco seeds. Theses results show that the mammalian ADA gene may serve as a new selectable marker for tobacco transformation.

  • PDF

The Role of S RNase Associated with Gametophytic Self-Incompatibility in Tomato (Lycopersicon peruvianum) (토마토 자가불화합성에 관여하는 S RNase 유전자의 기능)

  • 강나영;김명희;조규형;신동일;김달웅;박희성;정일경
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.3
    • /
    • pp.219-226
    • /
    • 2000
  • Lycopersicon peruvianum has a gametophytic self-incompatibility (GSI) mechanism controlled by a single genetic locus (S locus) with multiple alleles. S RNases, an allelic series of abundant stylar proteins, are products of the S locus in L. peruvianum and other Solanaceous plants. The $S_{11}$ RNase gene from L. peruvianum was introduced into a self-compatible (SC) species (Lycopersicon esculentum) to examine whether the expression pattern in the heterologous host mimics that in L. peruvianum. The resultant transgenic L. esculentum plants expressed the introduced gene highly in their styles, which is similar manner to the expresion in L. peruvianum. The $S_{11}$ RNase gene was expressed in the syle at a similar stage of flower development in both transgenic plants of L. esculentum and L. peruvianum without any morphological changes.

  • PDF

Environmental effects on plant calmodulin system (식물 칼모듈린 체계에 미치는 환경적 요인의 영향)

  • Yang, Moon-Sik;Oh, Suk-Heung
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.25-31
    • /
    • 1996
  • Transgenic tobacco plants expressing calmodulin derivative($lys{\rightarrow}ile$ 115 calmodulin) and hygromycin resistance genes or hygromycin resistance gene alone(control) were generated by Agrobacterium-mediated DNA transfer. Seeds obtained from the transgenic plants($F_o$) were tested for resistance to hygromycin and the expected 3 : 1 ratio was observed. The expression of calmodulin derivative in the tobacco plants was identified by a combined method of Western blot and Chemiluminescence. The effects of surface sterilizers on the germiation of seeds from transgenic tobacco plants were tested in Murashige and Skoog agar medium. Seeds obtained from transgenic tobacoo plants expressing the calmodulin derivative showed no fungi contamination with normal germination by treating with sterilized water alone or sodium hypochlorite(2% effective chlorine). In contrast, seeds from the control transgenic tobacco plants showed severe contamination with fungi by treating with sterilized water alone and showed no contamination with normal germination by treating with sodium hypochlorite(2% chlorine). The effects of calcium concentration on the germination of seeds from transgenic tobacco plants were tested in Murashige and Skoog agar medium. Seeds obtained from transgenic tobacco plants expressing the calmodulin derivative showed better germination frequency than that of the control transgenic tobacco seeds in the medium containing 30 mM $CaCl_2$. The data raise the possibility that the expression of calmodulin derivative gene in tobacco plants could increase adaptability of the seeds to environmental stresses.

  • PDF

Proteomic analysis of dehydroascorbate reductase transgenic potato plants (Dehydroascorbate reductase 과발현 형질전환 감자 식물체의 단백질체 분석)

  • Han, Eun-Heui;Goo, Young-Min;Kim, Yun-Hee;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.223-230
    • /
    • 2016
  • Ascorbic acid (AsA) is a strong antioxidant/reducing agent that can be converted to dehydroascorbate (DHA) by oxidation in plants. DHA, a very short-lived chemical, is recycled to AsA by dehydroascorbate reductase (DHAR). Previously, DHAR cDNA was isolated from the hairy roots of the sesame plant, and DHAR-overexpressing transgenic potato plants were generated under the control of the CaMV35S promoter (CaMV35S::DHAR). An increase in transgene expression and ascorbate levels were observed in the transgenic plants. In the present study, proteomic analysis revealed that transgenic plants not only accumulated DHAR in their cells, but also induced several other antioxidant enzyme-related proteins during plant growth. These results suggest that DHAR is important for stress tolerance via induction of antioxidant proteins, and could improve stress tolerance in transgenic potato plants.

Gene Expression in The Fifth Generation of TMV Resistant Transgenic Tobacco Plane at Elevated Temperature (TMV 저항성 형질전환 연초식물체 제 5 세대에서 유전자 안정성 및 고온조건에서의 유전자 발현)

  • 이기원;박성원;이청호;박은경;김상석;최순용
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.245-250
    • /
    • 1998
  • Tobacco mosaic virus(TMV) coat protein cDNA was transformed to Nicotiana tabacum cv. NC82 and the transgenic tobacco plants resistant to TMV infection were isolated in the next generation. The expression of TMV coat protein cDNA and genetic stability of the fifth generation of TMV resistant transgenic tobacco plants at the higher temperature were investigated. The TMV coat protein cDNA was amplified by genomic PCR in all the TMV resistant transgenic tobacco plants. The TMV coat protein expressed in the transgenic tobacco plants was detected at very low level by immunoblot hybridization. Even in tansgenic plants that showed the viral symptom only on very late sucker growth (delay type plants), the coat protein expression in the suckers was much less than that of susceptible tobacco infected with TMV. The TMV coat protein expressed in the transgenic tobacco plants was below 0.01% of total protein. Transcription and expression of the coat protein cDNA in delay type plants were observbed at high temperature (38$^{\circ}C$), and TMV replication was suppressed at both 28$^{\circ}C$ and 38$^{\circ}C$. This indicates that unlike the resistance conferred by 'N' gene. TMV resistance of transgenic tobacco plant won't break down at high temperature.

  • PDF

Expression of Glutathione Reductase Gene in Transgenic Tobacco Plant (형질전환 담배 식물체에서 Glutathione Reductase 유전자의 발현)

  • 이효신;조진기
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.2
    • /
    • pp.87-90
    • /
    • 2001
  • BcGRl gene encoding cytosolic glutathione reductase of Chinese cabbage (Brassica campestris var. Pekinensis cv. Seoul) was placed under the control of the CaMV 35S promoter and introduced into tobacco (Nicotiana tabacum L. cv. Samsun) via Agrobacterium-mediated transformation. T$_{0}$ 32 independent plants transformed with BcGRl gene were selected with kanamycin and they were confirmed by polymerase chain reaction (PCR) and Southern blot analysis. Northern blot analysis revealed that the constitutive expression of BcGRl gene and there was no relationship between the copy number of introduced gene and the levels of BcGRl transcripts.

  • PDF

형질전환 동.식물 이용기술

  • 이경광;유대열
    • The Microorganisms and Industry
    • /
    • v.19 no.1
    • /
    • pp.44-46
    • /
    • 1993
  • 이 논문은 형질전환 동.식물 이용기술 연구의 필요성, 연구과제의 현황, 연구동향 그리고 끝으로 연구전망 및 건의사항에 대해 기술하였다.

  • PDF