• Title/Summary/Keyword: 형상 지표

Search Result 152, Processing Time 0.022 seconds

Determination of Stream Reach for River Environment Assessment System Using Satellite Image (위성영상을 활용한 하천환경 평가 세구간 설정)

  • Kang, Woochul;Choe, Hun;Jang, Eun-kyung;Ko, Dongwoo;Kang, Joongu;Yeo, Hongkoo
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.179-193
    • /
    • 2021
  • This study examines the use of satellite images for river classification and determination of stream reach, which is the first priority in the river environment assessment system. In the river environment assessment system used in South Korea, it is proposed to set a stream reach by using 10 or 25 times the width of the river based on the result of river classification. First, river classification for the main stream section of Cheongmi stream was performed using various river-related data. The maximum likelihood method was applied for land cover classification. In this study, Sentinel-2 satellite imagery, which is an open data technology with a resolution of 10 m, was used. A total of four satellite images from 2018 was used to consider various flow conditions: February 2 (daily discharge = 2.39 m3/s), May 23 (daily discharge = 15.51 m3/s), June 2 (daily discharge = 3.88 m3/s), and July 7 (daily discharge = 33.61 m3/s). The river widths were estimated from the result of land cover classification to determine stream reach. The results of the assessment reach classification were evaluated using indicators of stream physical environments, including pool diversity, channel sinuosity, and river crossing shape and structure. It is concluded that appropriate flow conditions need to be considered when using satellite images to set up assessment segments for the river environment assessment system.

A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image (Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구)

  • Chae, Sung-Ho;Park, Sung-Hwan;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.931-946
    • /
    • 2017
  • The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.