본 연구에서는 고해상도 위성영상의 분류에 적합한 형상 기반 분류 소프트웨어를 개발하기 위한 연구를 수행하였다. 형상 기반 분류에 필요한 영상분할과 퍼지 기반의 분류 알고리즘을 개발하고, 형상 기반 분류에 요구되는 다양한 요소들을 고려하여 사용자와의 원활한 상호작용을 지원하기 위한 사용자 인터페이스를 구현하였다. 개발된 소프트웨어의 성능을 평가하고자 본 연구에서 개발된 소프트웨어와 현재 전 세계적으로 널리 보급되고 있는 형상 기반 분류 관련 상용 소프트웨어인 eCognition을 적용하여 동일한 영상을 시험적으로 처리해 본 결과 유사한 영상 분류결과를 얻을 수 있었다. 영상분할의 경우에는 본 연구에서 개발한 소프트웨어의 처리속도가 우수하였다. 형상 기반 분류를 수행하는 데에는 프로그램과 사용자간의 고도의 상호작용이 요구되므로, 향후에 이를 편리하게 하기 위한 사용자 인터페이스의 보완이 필요하다는 것을 알 수 있었다.
본 논문에서는 SVM (Support Vector Machine)을 기반으로 하여 인체의 뇌 하부구조인 해마에 대한 지능적 형상분석 방법을 제공한다. 일반적으로 의료 영상으로부터 해마의 형상 분석을 하기 위해서는 충분한 임상 데이터를 필요로 한다. 하지만 현실적으로 많은 양의 표본들을 얻는 것이 쉽지 않기 때문에 전문가의 지식을 기반으로 한 작업이 수반되어야 한다. 결국 이러한 요소들이 분석 작업을 어렵게 한다. 의학 기술이 복잡해 지면서 최근의 형상 분석 연구는 점차 통계적 모델을 기반으로 진행되고 있다. 본 연구에서는 해마로부터 고해상도의 매개변수형 모델을 만들어 형상 표현으로 이용하고, 집단간 분류 작업에 SVM 알고리즘을 적용하는 지능적 분석 방법을 구현한다. 우선 메쉬 데이터로부터 물리변형모델 기반의 매개변수 모델을 구축하고, PDM (point distribution model) 방법을 적용하여 두 집단을 대표하는 평균 모델을 생성한다. 마지막으로 SVM 기반의 이진 분류기를 구축하여 집단간 분류 작업을 수행한다. 구현한 모델링 방법과 분류기의 성능을 평가하기 위하여 본 연구에서는 네 가지 커널 함수 (linear, radial basis function, polynomial, sigmoid)들을 적용한다. 본 논문에서 제시한 매개변수형 모델은 다양한 형태의 의료 데이터로부터 보편적인 3차원 모델을 생성하고, 또한 모델의 전역적, 국부적인 특징들을 복합적으로 표현할 수 있기 때문에 통계적 형상분석에 적합하다. 그리고 SVM 기반의 분류기는 적은 수의 학습 데이터로부터 정상인 해마 집단과 간질 환자 집단간의 정확한 분류를 가능하게 한다.
본 논문에서는 뇌의 하부구조인 해마를 정확하게 분석하기 위한 형상 정규화 방법과 정상인과 간질 환자의 해마를 분류하기 위한 방법을 제시한다. 해마에 대한 형상 분석 과정은 크게 형상 표현을 구축하는 과정, 형상의 유사도를 측정하는 과정, 정상인 집단과 환자 집단을 분류하는 과정으로 이루어진다. 본 연구에서는 해마의 형상 표현으로 메쉬, 골격, 복셀로 이루어진 하이브리드 옥트리 자료구조를 구축하였다. 또한 Iterative Closest Point (ICP) 알고리즘을 사용하여 해마 골격을 기반으로 한 정규화를 수행하였다. 그리고 정규화된 해마 형상을 전역적, 국부적으로 분석하여 최종적으로 입력된 해마가 정상인 또는 간질 환자에 속하는지를 학습된 데이터를 이용하여 분류하였다. 본 논문에서 제시한 ICP 기반의 정규화 방법은 3차원 해마 형상을 정확하게 분석하게 해주고, 골격의 정점 수를 조절함으로써 정규화 시간을 감소시킬 수 있다. 뿐만 아니라 3차원 해마 모델의 형상을 신경망을 통하여 학습시킴으로써 해마의 형상이 변형된 환자 집단과 정상인 집단을 분류하는데 이용할 수 있다.
본 논문은 해마의 형상 분석을 위한 효과적인 모델 표현 방법과 분석 과정에서의 실제감을 향상시키는 스테레오-햅틱 장치 기반의 대화형 가상 환경을 제공한다. 매개변수형 표면 모델과 골격 표현은 해마의 형상을 효과적으로 표현하고 이러한 정보를 옥트리 자료 구조에 저장하여 대화형의 형상 분석 작업을 가능하게 한다. 그리고 골격 기반 정규화 방법은 다양한 모달리티를 갖는 의료 영상으로부터 생성된 3차원 해마 모델들의 위치와 방위를 정확하게 맞추어주는 기능을 수행한다. 또한 본 논문에서는 정상인 해마 형상 집단과 간질 환자 해마 형상 집단의 정확한 분류 작업을 수행하기 위하여 SVM 알고리즘 기반의 분류기 모델을 구축하였다. 실험 결과를 통하여 본 논문에서 제안한 표현 구조는 다양한 단계의 형상 표현을 제공하며 SVM 기반 분류기는 두 집단간 형상 차이를 분석하기 위한 효과적이었음을 확인하였다. 또한 스테레오 디스플레이 장치와 햅틱 장치를 결합한 가상환경은 사용자에게 향상된 공간 인지와 조작력을 제공하기 때문에 의료 분야에서의 해마 모델과 같은 다양한 해부학적 구조에 대한 분석 작업에 효과적으로 활용될 수 있다.
최근 건설업계는 전통적인 2차원 문서 환경에서 3차원 디지털 정보 환경으로의 전환이 가속화되고 있다. 하지만 3차원 정보의 적용 방법론에 관한 연구는 아직 미진한 실정이다. 기존의 2차원 기반 건설프로세스와 다르게 3차원 정보 모델은 3차원의 형상 정보를 기반으로 하여 건설 프로세스의 효율성을 향상시키고자 제안되었다. 본 논문에서는 실제 교량의 시공 단계에서 3차원 정보 모델을 구축하고 활용함으로써 그 효율성을 검증하였다. 대상 교량은 PSC 박스거더 형식의 군장대교 접속B교이며 3차원 정보 모델 구축을 위하여 대상 교량에 대한 분류체계를 정의하고 3차원 형상 모델을 생성하였다. 또한 시공 단계 업무에 3차원 정보 모델을 활용함으로써 시공 효율성 향상을 확인할 수 있었다.
본 논문에서는 햅틱 피드백과 스테레오 비쥬얼 큐를 혼합한 다중 감각 기반의 지능형 3차원 형상 분석 방법을 소개한다. 지능형 형상 분석 방법은 3차원 모델의 구조에 대한 보다 상세한 정보를 제공한다. 특히 의료 분야에 사용될 경우 전문가의 개입을 최소화하여 질병 진단 및 치료 등에 사용될 수 있다. 본 연구에서는, MRI나 CT 영상으로부터 생성된 3차원 매개변수형 모델을 이용하여 유사 모델 집단을 대표하는 통계 형상을 구축한 후, SVM (Support Vector Machine) 학습 알고리즘을 이용하여 두 집단간 형상 차이를 분석한다. 3차원 형상에 대한 신속한 시각적 이해와 직관적 조작감은 물체 표면의 형상 변화를 분석하는데 효과적으로 사용될 수 있다. 본 논문에서는 물체 조작 및 관찰 등의 작업을 수행할 때, 햅틱 피드백과 스테레오 비쥬얼 큐를 혼합한 인터랙션 기법을 사용하여 공간감과 깊이감을 향상시켜 형상 분석 결과를 효과적으로 분석한다. 본 연구에서는 해마, 관상 동맥, 뇌와 같은 인체 장기를 실험 데이터로 사용하여 제안한 SVM 기반의 분석 방법과 인터랙션 환경의 성능을 평가한다. 본 연구에서 구현한 SVM 기반 이진 분류기는 두 집단간 형상 차이를 효과적으로 분석하며, 또한 다중 감각 인터랙션은 사용자가 분석 결과를 관찰하고 카메라 및 형상을 효율적으로 조작하는 데 도움을 준다.
3차원 모델의 형상 유사성 평가는 의학, 기계 공학, 분자 생물학 등의 많은 분야에서 매우 중요하다. 더욱이 3차원 모델이 웹 상에 보편화됨에 따라 3차원 모델들의 분류와 검색에 관한 연구들이 활발하게 이루어지고 있다. 본 논문에서는 3차원 형상 표현 방법들과 유사성 평가에 대한 주요 개념들을 기술하고, 최근의 형상 비교에 관한 연구들을 다해상도, 위상 기하학, 2차원 영상, 통계학 기반 방법들로 분류하여 그 특징들을 분석하였다. 또한 논문에서 채택한 유일성, 강인성, 불변성, 다해상도, 효율성, 비교범위와 같은 기준을 사용하여 그 성능을 비교 평가하였다. 다해상도 기반 방법은 비교를 위한 계산 시간은 감소시킨 반면 전처리 시간은 증가시켰다. 기하 및 위상 정보를 이용한 방법은 보다 다양한 형태의 모델들을 비교할 수 있었고 부분적인 형상 비교에도 강인하였다. 2차원 영상을 이용한 방법들은 시간 및 공간 복잡도가 높게 나타났다. 통계학 기반 방법들은 포즈 정규화 작업 없이 형상 비교가 가능하였고, 어파인 변환 및 잡음에도 강인한 결과를 보였다.
본 논문은 단일 3차원 모델과 모델의 클래스의 특징적인 시점을 추출하여 3차원 모델 검색 및 분류를 수행하는 기법을 제안한다. 제안하는 기법은 3차원 모델을 투영한 2차원 형상 중에 특징적인 형상을 추출하는데, 이때 고르게 샘플(sample)된 형상들을 최근 개발된 친근도 전파 (affinity propagation) 기법을 이용하여 군집화(clustering)한다. 친근도 전파는 데이터를 군집화하는 동시에 각 클러스터의 대표 값을 계산하므로, 군집화된 형상들로부터 대표 형상이 자연스럽게 지정된다. 제안하는 기법은 친근도 기법을 클래스별로 각 모델의 대표 형상 집합에 재차 적용하여 클래스의 대표 형상을 추출하고, 이를 기반으로 하여 3차원 모델의 분류도 가능하게 한다. 3차원 모델의 검색 뿐 아니라 분류를 가능하게 함으로써, 분류를 검색의 전처리 과정으로 하여 연관된 클래스의 모델 중에서만 검색을 수행할 수 있게 하여 단위가 큰 데이터베이스에서도 효율적인 검색을 가능하게 한다. [16]에 제안된 프린스턴 벤치마크 데이터베이스(Princeton benchmark database)을 이용한 실험을 통해 제안하는 검색 및 분류 기법의 유용함을 보인다.
본 논문에서는 위상차 현미경 영상 내 U87 세포의 정확한 형태학적 분류를 위한 이진 분류기 구축 방법을 제안한다. 본 방법은 Fourier descriptor 기반 세포형상 표현을 SVM 이진분류기 구축에 사용함으로써 분류 대상인 원추형과 원형세포에 대해 영상 내 세포의 위치와 회전, 크기의 변화에 대해 강인한 분류성능을 제공한다. 본 실험을 통해 polynomial 커널에서 학습된 SVM 분류기가 linear, RBF, sigmoid 에 비교하여 가장 정확한 분류 성능을 보임을 확인하였다. 본 연구는 논문상 기준인 두 종류의 세포 형태 분류기를 기반 프레임워크로 삼아 좀더 다양한 세포 형태를 분류할 수 있도록 개선된다면 악성뇌종양의 전이억제치료에 효과적인 전이행동분석에 도움을 줄 수 있을 것으로 기대된다.
터빈 사이클의 성능 상태량을 결정하기 위한 보정 열 성능 분석은 발전소의 향상된 경제성 운전을 위해 요구된다. 본 연구에서는 유용하고 정확한 성능 분석을 위해서 산업 표준인 ASME PTC를 기분으로 하여 성능 데이터를 사용하여 주급수 유량의 영역별 판정 알고리듬을 개발하고 각 영역별 추정 알고리즘을 개발하였다. 추정 알고리즘은 측정 상태량의 상관관계를 기반으로 형상 분류를 제시하고, 이를 기반으로 서포트 벡터 머신 모델링을 이용하여 추정 모델을 구성하였으며, 서포트 벡터 머신 모델링의 우수성을 검증하기 위하여 신경 회로망 모델, 커널 회귀 모델과 비교하였다. 주급수 유량의 형상 분류 및 추정 모델은 터빈 사이클에서 정확한 보정 열 성능 분석을 제공함으로써 향상된 성능 분석에 기여할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.