Journal of Korean Society of Disaster and Security
/
v.12
no.3
/
pp.13-24
/
2019
The concept of shape similarity has been applied to verify the accuracy of the SIND model, the real-time prediction model for disaster risk. However, the CRITIC method, one of the most widely used in geometric methodology, is definitely limited to apply to complex shape such as hazard map for coastal disaster. Therefore, we suggested the modified CRITIC method of which we added the shape factors such as RCCI and TF to consider complicated shapes. The matching pairs were manually divided into exact-matching pairs and mis-matching pairs to evaluate the applicability of the new method for shape similarity into hazard maps for storm surges. And the shape similarity of each matching pair was calculated by changing the weights of each shape factor and criteria. Newly proposed methodology and the calculated weights were applied to the objects of the existent hazard map and the results from SIND model. About 90% of exact-matching pairs had the shape similarity of 0.5 or higher, and about 70% of mis-matching pairs were it below 0.5. As future works, if we would calibrate narrowly and adjust carefully multi-objects corresponding to one object, it would be expected that the shape similarity of the exact-matching pairs will increase overall while it of the mis-matching pairs will decrease.
The Journal of Korean Institute of Communications and Information Sciences
/
v.18
no.1
/
pp.133-142
/
1993
This paper prrsents shape matching of two-dimensional object. This shape matching is applied to two-dimensional simple c10sedcurves represented by polygons. A large number of shape matching procedures have proposed baseed on teh view that shape can be represented by a vector of numerical features, and that this representation can be matched using techniques from statical pattern recognition. The varieties of features that have been extracted from shapes and used to represent them are numerous. But all of these feature-based approches suffer from the shortcoming that the descriptor of a segment of a shape do not ordinarily bear any simple relations hip to the description for the entire shape. We solve the segment matching problem of shape matching, defined as the recognition of a piece of a shape as approximate match to a part of large shape, by using relaxation labeling technique.
Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
/
2009.04a
/
pp.23-25
/
2009
Nowadays, owing to the development of techniques for collecting geographic information, an increasing need is thus appearing: integrating heterogeneous databases. This paper proposes an algorithm for finding matching relationship between two node sets in road network data. We found the corresponding node pair using link shape linked with them as well as their location. The accuracy of matching was grown by this process. Result then can be used to reflect the topological information in performing link matching.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.30
no.1
/
pp.59-65
/
2012
In this paper, we proposed a method for automatic detection of a updating object from spatial data sets of different scale and updating cycle by using areal feature matching based on shape similarity. For this, we defined a updating object by analysing matching relationships between two different spatial data sets. Next, we firstly eliminated systematic errors in different scale by using affine transformation. Secondly, if any object is overlaid with several areal features of other data sets, we changed several areal features into a single areal feature. Finally, we detected the updating objects by applying areal feature matching based on shape similarity into the changed spatial data sets. After applying the proposed method into digital topographic map and a base map of Korean Address Information System in South Korea, we confirmed that F-measure is highly 0.958 in a statistical evaluation and that significant updating objects are detected from a visual evaluation.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.29
no.2
/
pp.113-121
/
2011
In this paper, we proposed the method automatically to match areal feature based on similarity using spatial information. For this, we extracted candidate matching pairs intersected between two different spatial datasets, and then measured a shape similarity, which is calculated by an weight sum method of each matching criterion automatically derived from CRITIC method. In this time, matching pairs were selected when similarity is more than a threshold determined by outliers detection of adjusted boxplot from training data. After applying this method to two distinct spatial datasets: a digital topographic map and street-name address base map, we conformed that buildings were matched, that shape is similar and a large area is overlaid in visual evaluation, and F-Measure is highly 0.932 in statistical evaluation.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.31
no.1
/
pp.49-55
/
2013
In this paper, we proposed a good classifier to match different spatial data sets by applying evaluation of classifiers performance in data mining and biometrics. For this, we calculated distances between a pair of candidate features for matching criteria, and normalized the distances by Min-Max method and Tanh (TH) method. We defined classifiers that shape similarity is derived from fusion of these similarities by CRiteria Importance Through Intercriteria correlation (CRITIC) method, Matcher Weighting method and Simple Sum (SS) method. As results of evaluation of classifiers performance by Precision-Recall (PR) curve and area under the PR curve (AUC-PR), we confirmed that value of AUC-PR in a classifier of TH normalization and SS method is 0.893 and the value is the highest. Therefore, to match different spatial data sets, we thought that it is appropriate to a classifier that distances of matching criteria are normalized by TH method and shape similarity is calculated by SS method.
Kim, Jin-Gon;Han, Dong-Yup;Yu, Ki-Yun;Kim, Yong-Il
한국지형공간정보학회:학술대회논문집
/
2004.10a
/
pp.25-31
/
2004
To obtain the 3-D coordinates of the urban roads from aerial images, the accurate matching technique in road areas is required. In this paper, we suggest the relational matching method that is performed by comparison of relationships of road pavement markings after they are extracted from aerial images using geometric properties and spatial relationships of the pavement markings. Relational matching requires not only high level description of features but also the solution for inexact matching problems. In addition, it needs a lot of tests for the reliable final result. In this research, we described features as calculating geometric properties of the pavement markings, suggested the solution for inextact matching problems, and performed tests to decide whether the result is acceptable or not, which use the property that road areas are flat. In order to evaluate the accuracy of matching, we made a visual evaluation and compared the result of this technique with those measured by analytical photogrammetry.
Journal of Korean Society for Geospatial Information Science
/
v.24
no.1
/
pp.89-98
/
2016
In this paper, we proposed an automated areal feature matching method based on geometric similarity without user intervention and is applied into areal features of many-to-many relation, for confusion of spatial data-sets of different scale and updating cycle. Firstly, areal feature(node) that a value of inclusion function is more than 0.4 was connected as an edge in adjacency matrix and candidate corresponding areal features included many-to-many relation was identified by multiplication of adjacency matrix. For geometrical matching, these multiple candidates corresponding areal features were transformed into an aggregated polygon as a convex hull generated by a curve-fitting algorithm. Secondly, we defined matching criteria to measure geometrical quality, and these criteria were changed into normalized values, similarity, by similarity function. Next, shape similarity is defined as a weighted linear combination of these similarities and weights which are calculated by Criteria Importance Through Intercriteria Correlation(CRITIC) method. Finally, in training data, we identified Equal Error Rate(EER) which is trade-off value in a plot of precision versus recall for all threshold values(PR curve) as a threshold and decided if these candidate pairs are corresponding pairs or not. To the result of applying the proposed method in a digital topographic map and a base map of address system(KAIS), we confirmed that some many-to-many areal features were mis-detected in visual evaluation and precision, recall and F-Measure was highly 0.951, 0.906, 0.928, respectively in statistical evaluation. These means that accuracy of the automated matching between different spatial data-sets by the proposed method is highly. However, we should do a research on an inclusion function and a detail matching criterion to exactly quantify many-to-many areal features in future.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.31
no.1
/
pp.23-28
/
2013
The process of a feature matching for two different spatial data sets is similar to the process of classification as a binary class such as matching or non-matching. In this paper, we calculated a threshold by applying an equal error rate (EER) which is widely used in biometrics that classification is a main topic into spatial data sets. In a process of discriminating what's a matching or what's not, a precision and a recall is changed and a trade-off appears between these indexes because the number of matching pairs is changed when a threshold is changed progressively. This trade-off point is EER, that is, threshold. To the result of applying this method into training data, a threshold is estimated at 0.802 of a value of shape similarity. By applying the estimated threshold into test data, F-measure that is a evaluation index of matching method is highly value, 0.940. Therefore we confirmed that an accurate threshold is calculated by EER without person intervention and this is appropriate to matching different spatial data sets.
본 논문에서는 유비쿼터스 컴퓨팅 오피스 환경에서 가장 직관적인 HCI 수단인 손 제스처를 사용하여 대형 스크린 상의 응용 프로그램들을 쉽게 제어할 수 있는 시스템을 제안한다. 손 제스처는 손 영역의 정보, 손 중심점의 위치 변화값과 손가락 형상을 이용하여 시스템 제어에 필요한 종류들을 미리 정의해 둔다. 먼저 효율적으로 손 영역 획득을 위해 적외선 카메라를 사용하여 연속된 영상을 획득한다. 획득된 영상 프레임으로부터 구조적 템플레이트 매칭 방법을 사용하여 손의 중심(centroid) 및 손가락끝(fingertip)을 검출한다. 인식과정에서는 양손의 Euclidean distance와 손가락 형상 정보를 이용하여 미리 정의된 제스처와 비교하여 인식을 행한다. 본 논문에서 제안한 비전 기반 hand gesture 제어 시스템은 인간과 컴퓨터의 상호작용을 이해하는데 많은 이점을 제공할 수 있다. 실험 결과를 통해 본 논문에서 제안한 방법의 효율성을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.