• Title/Summary/Keyword: 협력적 필터링 기법

Search Result 53, Processing Time 0.022 seconds

Understanding Collaborative Tags and User Behavioral Patterns for Improving Recommendation Accuracy (추천 시스템 정확도 개선을 위한 협업태그와 사용자 행동패턴의 활용과 이해)

  • Kim, Iljoo
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.99-123
    • /
    • 2018
  • Due to the ever expanding nature of the Web, separating more valuable information from the noisy data is getting more important. Although recommendation systems are widely used for addressing the information overloading issue, their performance does not seem meaningfully improved in currently suggested approaches. Hence, to investigate the issues, this study discusses different characteristics of popular, existing recommendation approaches, and proposes a new profiling technique that uses collaborative tags and test whether it successfully compensates the limitations of the existing approaches. In addition, the study also empirically evaluates rating/tagging patterns of users in various recommendation approaches, which include the proposed approach, to learn whether those patterns can be used as effective cues for improving the recommendations accuracy. Through the sensitivity analyses, this study also suggests the potential associated with a single recommendation system that applies multiple approaches for different users or items depending upon the types and contexts of recommendations.

The Research on Recommender for New Customers Using Collaborative Filtering and Social Network Analysis (협력필터링과 사회연결망을 이용한 신규고객 추천방법에 대한 연구)

  • Shin, Chang-Hoon;Lee, Ji-Won;Yang, Han-Na;Choi, Il Young
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.19-42
    • /
    • 2012
  • Consumer consumption patterns are shifting rapidly as buyers migrate from offline markets to e-commerce routes, such as shopping channels on TV and internet shopping malls. In the offline markets consumers go shopping, see the shopping items, and choose from them. Recently consumers tend towards buying at shopping sites free from time and place. However, as e-commerce markets continue to expand, customers are complaining that it is becoming a bigger hassle to shop online. In the online shopping, shoppers have very limited information on the products. The delivered products can be different from what they have wanted. This case results to purchase cancellation. Because these things happen frequently, they are likely to refer to the consumer reviews and companies should be concerned about consumer's voice. E-commerce is a very important marketing tool for suppliers. It can recommend products to customers and connect them directly with suppliers with just a click of a button. The recommender system is being studied in various ways. Some of the more prominent ones include recommendation based on best-seller and demographics, contents filtering, and collaborative filtering. However, these systems all share two weaknesses : they cannot recommend products to consumers on a personal level, and they cannot recommend products to new consumers with no buying history. To fix these problems, we can use the information which has been collected from the questionnaires about their demographics and preference ratings. But, consumers feel these questionnaires are a burden and are unlikely to provide correct information. This study investigates combining collaborative filtering with the centrality of social network analysis. This centrality measure provides the information to infer the preference of new consumers from the shopping history of existing and previous ones. While the past researches had focused on the existing consumers with similar shopping patterns, this study tried to improve the accuracy of recommendation with all shopping information, which included not only similar shopping patterns but also dissimilar ones. Data used in this study, Movie Lens' data, was made by Group Lens research Project Team at University of Minnesota to recommend movies with a collaborative filtering technique. This data was built from the questionnaires of 943 respondents which gave the information on the preference ratings on 1,684 movies. Total data of 100,000 was organized by time, with initial data of 50,000 being existing customers and the latter 50,000 being new customers. The proposed recommender system consists of three systems : [+] group recommender system, [-] group recommender system, and integrated recommender system. [+] group recommender system looks at customers with similar buying patterns as 'neighbors', whereas [-] group recommender system looks at customers with opposite buying patterns as 'contraries'. Integrated recommender system uses both of the aforementioned recommender systems to recommend movies that both recommender systems pick. The study of three systems allows us to find the most suitable recommender system that will optimize accuracy and customer satisfaction. Our analysis showed that integrated recommender system is the best solution among the three systems studied, followed by [-] group recommended system and [+] group recommender system. This result conforms to the intuition that the accuracy of recommendation can be improved using all the relevant information. We provided contour maps and graphs to easily compare the accuracy of each recommender system. Although we saw improvement on accuracy with the integrated recommender system, we must remember that this research is based on static data with no live customers. In other words, consumers did not see the movies actually recommended from the system. Also, this recommendation system may not work well with products other than movies. Thus, it is important to note that recommendation systems need particular calibration for specific product/customer types.

Clustering Analysis by Customer Feature based on SOM for Predicting Purchase Pattern in Recommendation System (추천시스템에서 구매 패턴 예측을 위한 SOM기반 고객 특성에 의한 군집 분석)

  • Cho, Young Sung;Moon, Song Chul;Ryu, Keun Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.193-200
    • /
    • 2014
  • Due to the advent of ubiquitous computing environment, it is becoming a part of our common life style. And tremendous information is cumulated rapidly. In these trends, it is becoming a very important technology to find out exact information in a large data to present users. Collaborative filtering is the method based on other users' preferences, can not only reflect exact attributes of user but also still has the problem of sparsity and scalability, though it has been practically used to improve these defects. In this paper, we propose clustering method by user's features based on SOM for predicting purchase pattern in u-Commerce. it is necessary for us to make the cluster with similarity by user's features to be able to reflect attributes of the customer information in order to find the items with same propensity in the cluster rapidly. The proposed makes the task of clustering to apply the variable of featured vector for the user's information and RFM factors based on purchase history data. To verify improved performance of proposing system, we make experiments with dataset collected in a cosmetic internet shopping mall.