• 제목/요약/키워드: 협력적 여과 시스템

검색결과 38건 처리시간 0.024초

사용자 클러스터링을 통한 개선된 협력적 정보여과 (Improved Collaborative Information Filtering with User Clustering)

  • 김학균;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.75-77
    • /
    • 1999
  • 정보추천 시스템은 사용자가 어떤 정보를 선호하는지를 식별함으로써 산재한 정보 중에서 적절한 정보만을 제공하는 것을 목표로 한다. 이러한 정보추천 시스템에서 사용되는 정보여과 기술에는 내용기반 여과와 협력적 여과가 있다. 기존의 협력적 정보여과 기술은 선호도를 적게 제시한 사용자에게 정보를 추천하기 어렵고, 동일한 상품 정보에 대해서 사용자의 평가가 없을 경우 사용자간의 유사성을 판단하기 어려운 단점이 있다. 본 논문은 SVD (Singular Value Decomposition)를 통해 사용자 프로파일을 정량화함으로써 사용자 선호도 행렬로부터 숨어있는 의미정보를 추출하여 동일한 정보에 대해 선호도를 평가해야 한다는 단점을 극복한다. 이때, 사용자 프로파일 벡터를 비감독 학습 알고리즘인 SOM (Self0Organizing Map)으로 클러스터링하여 사용자를 분류하고, 정보추천은 사용자 그룹간에서 이루어지며 Pearson correlation 알고리즘을 이용한다. 기존의 방법과 비교한 결과, 제안한 방법이 새로운 사용자에 대해서도 적절한 정보를 추천할 수 있음을 볼 수 있었다.

  • PDF

유머문서 추천을 위한 기계학습 기법 (A Learning Model for Recommendation of Humor Documents)

  • 이종우;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.253-255
    • /
    • 2001
  • 인터넷을 통한 사용자의 선호도를 분석하고 협력적 여과 및 내용기반 여과 기술을 결합 이용하여 유머문서를 추천하는 MrHumor 시스템을 구축하였다. 유머문서 추천 기술은 다양한 아이템에 대한 여과 및 추천 기술로 확장되어 인터넷을 통한 과다 정보 시대에 필요한 소프트봇 혹은 지능형 에이전트 기술에 적용될 수 있다. MrHumor 추천시스템은 적응형 학습 시스템으로서 새로운 사용자의 선호도에 대한 학습량과 추천시기에 따라 이용할 추천방식이 다른 성능을 보이는데 여러 가지 상황에서도 적절한 동작을 보이기 위하여 MrHumor에서는 은닉변수 모델을 이용하여 사용자의 인구통계적 정보와 문서의 내용적 특징간의 관계를 학습하여 초기 추천을 행하고 SVM을 이용하여 개인의 선호도를 학습한 내용 기반의 여과와 적응형 k-NN모델을 이용한 협력적 여과를 결합하여 추천을 수행한다. 제안된 방식에 의한 추천 성능은 3방식이 각각 이용된 경우에 비해 안정적이고 높은 예측 정확도를 보인다.

  • PDF

협력적 여과 시스템을 위한 효과적인 사용자 군집 알고리즘 (Effective User Clustering Algorithm for Collaborative Filtering System)

  • 고수정;임기욱;이정현
    • 정보처리학회논문지B
    • /
    • 제8B권2호
    • /
    • pp.144-154
    • /
    • 2001
  • 협력적 여과 시스템은 사용자가 검색하고 읽었던 웹문서를 기반으로 사용자 군집을 생성하여 웹문서의 정확한 추천을 가능하게 한다. 이러한 목적으로 설계된 다양한 알고리즘이 있으나 속도가 느리거나 정확도가 낮다는 등의 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 협력적 여과 시스템을 위한 효과적인 사용자 군집 알고리즘인 CUG알고리즘은 사용자 군집을 생성하기 위해 Apriori 알고리즘, Native Bayes 알고리즘을 이용한다. Apriori 알고리즘은 연관 단어 지식 베이스를 구축하고, Native Bayes 알고리즘은 구축된 연관 단어 지식 베이스에 가중치를 추가하며, 사용자가 검색하여 읽은 웹문서를 클래스별로 분류한다. CUG 알고리즘은 분류된 웹문서를 기반으로 하여 사용자 군집을 만든다. 이러한 방법으로 설계된 CUG 알고리즘은 사용자들이 사용할 문서를 미리 검색하여 저장함에 의해 정보검색의 효율성을 향상시키는데 사용될 수 있다. 본 논문에서 설계한 CUG 알고리즘의 선능을 평가하기 위하여 기존의 K-means 방법과 Gibbs샘플링 방법에 의한 군집과 비교한다.

  • PDF

협력적 여과 시스템의 예측 정확도 향상을 위한 전처리 방법 (A Preprocessing Method for Improving Prediction Accuracy in Collaborative Filtering)

  • 김교창;전종훈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (A)
    • /
    • pp.698-700
    • /
    • 2003
  • 본 논문에서는 협력적 여과방식에서 고객의 특정 상품에 대한 선호도 예측의 정확도를 향상하기 위해 상품의 선호도 값에 가중치를 반영하는 전처리 방법을 제안한다. 이를 위해 고객별 상품의 선호도 값에 정보검색 분야에서 사용되고 있는 벡터 공간 모델을 이용하여 가중치를 부여하며, 이를 통하여 특정 상품을 선호하는 고객과 전체 상품을 고루 선호하는 고객간의 차별화 값을 반영하여 보다 정확한 선호도를 예측할 수 있게 된다. 전처리 과정을 수행하지 않은 기존의 협력적 여과 방식과의 실험을 통한 비교 분석을 통하여 본 논문이 제안하는 전처리 과정의 타당성과 비교우위를 검증한다.

  • PDF

연관 규칙과 협력적 여과 방식을 이용한 추천 시스템 (Recommender System using Association Rule and Collaborative Filtering)

  • 이기현;고병진;조근식
    • 지능정보연구
    • /
    • 제8권2호
    • /
    • pp.91-103
    • /
    • 2002
  • 기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다. 협력적 여과 기술은 비슷한 선호도를 가지는 사용자들과의 상관관계를 기반으로 취향에 맞는 아이템을 예측하여 특정 사용자에게 추천하여준다. 그러나 협력적 필터링은 추천을 받기 위해서 특정 수 이상의 아이템에 대한 평가를 요구하며, 또한 전체 사용자에 대해 단지 비슷한 선호도를 가지는 일부 사용자 정보에 의지하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 그러나 나머지 사용자 정보에도 추천을 위한 유용한 정보가 숨겨져 있다. 우리는 이러한 숨겨진 유용한 추천 정보를 발견하기 위하여 본 논문에서는 협력적 여과 방식과 함께 데이터 마이닝(Data Mining)에서 사용되는 연관 규칙(Association Rule)을 추천에 사용한다. 연관 규칙은 한 항목 그룹과 다른 항목 그룹 사이에 존재하는 연관성을 규칙(Rule)의 형태로 표현한 것이다. 이와 같이 생성된 연관 규칙은 개인 구매도 분석, 상품의 교차 매매(Cross-Marketing), 카탈로그 디자인, 염가 매출품(Loss Leader)분석, 상품 진열, 구매 성향에 따른 고객 분류 다양하게 사용되고 있다. 그러나 이런 연관 규칙은 추천 시스템에서 잘 응용되지 못하고 있는 실정이다. 본 논문에서 우리는 연관 규칙을 추천 시스템에 적용해, 항목그룹 사이에 연관성을 유도함으로써 추천에 효율적으로 사용할 수 있음을 보였다 즉 전체 사용자의 히스토리(History) 정보를 기반으로 아이템 사이의 연관 규칙을 유도하고 협력적 여과 방식과 함께 보조적으로 연관 규칙을 추천을 위해 사용함으로써 추천 시스템에 효율성을 높였다.

  • PDF

평가의 시간 순서를 고려한 강화 학습 기반 협력적 여과 (A Reinforcement Learning Approach to Collaborative Filtering Considering Time-sequence of Ratings)

  • 이정규;오병화;양지훈
    • 정보처리학회논문지B
    • /
    • 제19B권1호
    • /
    • pp.31-36
    • /
    • 2012
  • 최근 사용자의 흥미에 맞는 아이템이나 서비스를 추천해 주는 추천 시스템에 대한 관심이 높아지고 있다. 최근 종료된 Netflix 경연대회(Netflix Prize)가 이 분야에 대한 연구자들의 연구 의욕을 고취시켰고, 특히 협력적 여과(Collaborative Filtering) 방법은 아이템의 종류에 상관없이 적용 가능한 범용성 때문에 활발히 연구되고 있다. 본 논문은 강화 학습을 이용해서 추천 시스템의 협력적 여과 문제를 푸는 방법을 제안한다. 강화 학습을 통해, 영화 평점 데이터에서 각 사용자가 평점을 매긴 순서에 따른 평점 간의 연관 관계를 학습하고자 하였다. 이를 위해 협력적 여과문제를 마르코프 결정 과정(Markov Decision Process)로 수학적으로 모델링하였고, 강화 학습의 가장 대표적인 알고리즘인 Q-learning을 사용해서 평가의 순서의 연관 관계를 학습하였다. 그리고 실제로 평가의 순서가 평가에 미치는 영향이 있음을 실험을 통해서 검증하였다.

저차원 선형 모델을 이용한 하이브리드 협력적 여과 (A Hybrid Collaborative Filtering Using a Low-dimensional Linear Model)

  • 고수정
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권10호
    • /
    • pp.777-785
    • /
    • 2009
  • 협력적 여과는 특별한 아이템에 대한 사용자의 선호도를 예측하는 데 사용하는 기술이다. 이러한 협력적 여과 기술은 사용자 기반 접근 방식과 아이템 기반 접근 방식으로 구분할 수 있으며, 많은 상업적인 추천 시스템에서 광범위하게 사용되고 있다. 본 논문에서는 저차원 선형 모델을 사용하여 사용자 기반과 아이템 기반을 통합하는 하이브리드 협력적 여과 방법을 제안한다. 제안한 방법에서는 저차원 선형모델 중 비음수 행렬 분해(NMF)를 이용하여 기존의 협력적 여과 시스템의 문제점인 희박상과 대용량성의 문제점을 해결한다. 협력적 여과 시스템에서 NMF를 이용하는 방법은 사용자를 의미 관계로 표현할 때 유용하게 사용되나 사용자-아이템 행렬의 평가값에 따라 정확도가 낮아질 수 있으며, 모델 기반의 방법이기 때문아 계산 과정이 복잡하여 동적인 추천이 불가능하다는 단점을 갖는다. 이러한 단점을 보완하기 위하여 제안된 방법에서는 NMF에 의해 군집된 그룹을 대상으로 TF-lDF를 이용하여 그룹의 특징을 추출한다. 또한, 아이템 기반에서 아이템간의 유사도를 계산하기 위하여 상호정보량(mutual information)을 이용한다. 오프라인 상에서 훈련집합의 사용자를 군집시키고 그룹의 특징을 추출한 후, 온라인 상에서 추출한 그룹의 특징을 이용하여 새로운 사용자를 가장 최적의 그룹으로 분류함으로써 사용자를 분류하는 데 걸리는 시간을 단축시켜 동적인 추천을 가능하게 하며, 사용자 기반과 아이템 기반을 병합함으로써 기존의 방법보다 정확도를 높인다.

협력적 여과 시스템에서 귀납 추리를 이용한 순위 결정 (Ranking by Inductive Inference in Collaborative Filtering Systems)

  • 고수정
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권9호
    • /
    • pp.659-668
    • /
    • 2010
  • 협력적 여과 시스템은 새로운 사용자의 행위를 파악하고 사용자가 흥미로워할 아이템을 추천해주기 위해서 사용자들에 대한 새로운 정보를 필요로 한다. 이러한 정보를 획득하기 위하여 협력적 여과 시스템은 기존 데이터를 기반으로 학습을 하고, 그 결과에 따라 사용자에 대한 새로운 정보를 찾아낼 수 있다. 본 논문에서는 사용자에 대한 새로운 정보를 획득하기 위한 방법으로 귀납적 추리 방법을 제안하고, 추리된 사용자의 정보를 이용하여 아이템의 순위를 결정한다. 제안된 방법에서는 귀납적 기계 학습 방법인 NMF를 이용하여 사용자를 학습시켜서 모든 사용자들을 그룹으로 군집시키고, 각 그룹으로부터 카이제곱을 이용하여 그룹의 특징을 추출한다. 다음으로, 귀납 추리 방법의 하나인 베이지언 확률모델을 이용하여 새로운 사용자가 입력한 평가값과 각 그룹의 특징을 기반으로 사용자를 적합한 그룹으로 분류한다. 마지막으로, 사용자가 결측한 아이템을 대상으로 로치오(Rocchio) 알고리즘을 적용하여 아이템의 순위를 결정한다.

연관 규칙과 협력적 여과 방식을 이용한 추천 시스템 (Recommender System using Association Rule and Collaborative Filtering)

  • 이기현;고병진;조근식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 춘계학술대회 논문집
    • /
    • pp.265-272
    • /
    • 2002
  • 기존의 인터넷 웹사이트에서는 사용자의 만족을 극대화시키기 위하여 사용자별로 개인화 된 서비스를 제공하는 협력적 필터링 방식을 적용하고 있다 협력적 여과 기술은 비슷한 선호도를 가지는 사용자들과의 상관관계를 기반으로 취향에 맞는 아이템을 예측하여 특정 사용자에게 추천하여준다. 그러나 협력적 필터링은 추천을 받기 위해서 특정 수 이상의 아이템에 대한 평가를 요구하며, 또한 전체 사용자에 대해 단지 비슷한 선호도를 가지는 일부 사용자 정보에 의지하여 추천함으로써 나머지 사용자 정보를 무시하는 경향이 있다. 그러나 나머지 사용자 정보에도 추천을 위한 유용한 정보가 숨겨져 있다. 우리는 이러한 숨겨진 유용한 추천 정보를 발견하기 위하여 본 논문에서는 협력적 여과 방식과 함께 데이터 마이닝(Data Mining)에서 사용되는 연관 규칙(Association Rule)을 추천에 사용한다. 연관 규칙은 한 항목 그룹과 다른 항목 그룹 사이에 존재하는 연관성을 규칙(Rule)의 형태로 표현한 것이다. 이와 같이 생성된 연관 규칙은 개인 구매도 분석, 상품의 교차 매매(Cross-Marketing), 카탈로그 디자인, 염가 매출품(Loss Leader)분석, 상품 진열, 구매 성향에 따른 고객 분류 다양하게 사용되고 있다. 그러나 이런 연관 규칙은 추천 시스템에서 잘 응용되지 못하고 있는 실정이다. 본 논문에서 우리는 연관 규칙을 추천 시스템에 적용해, 항목 그룹 사이에 연관성을 유도함으로써 추천에 효율적으로 사용할 수 있음을 보였다. 즉 전체 사용자의 히스토리(History) 정보를 기반으로 아이템 사이의 연관 규칙을 유도하고 협력적 여과 방식과 함께 보조적으로 연관 규칙을 추천을 위해 사용함으로써 추천 시스템에 효율성을 높였다. 구축, 각종 전자문서 생성, 전자 결제, 온라인 보험 가입, 해운 선용품 판매 및 관련 정보 제공 등 해운 거래를 위한 종합적인 서비스가 제공되어야 한다. 이를 위해, 본문에서는 e-Marketplace의 효율적인 연계 방안에 대해 해운 관련 업종별로 제시하고 있다. 리스트 제공형, 중개형, 협력형, 보완형, 정보 연계형 등이 있는데, 이는 해운 분야에서 사이버 해운 거래가 가지는 문제점들을 보완하고 업종간 협업체제를 이루어 원활한 거래를 유도할 것이다. 그리하여 우리나라가 동북아 지역뿐만 아니라 세계적인 해운 국가 및 물류 ·정보 중심지로 성장할 수 있는 여건을 구축하는데 기여할 것이다. 나타내었다.약 1주일간의 포르말린 고정이 끝난 소장 및 대장을 부위별, 별 종양개수 및 분포를 자동영상분석기(Kontron Co. Ltd., Germany)로 분석하였다. 체의 변화, 장기무게, 사료소비량 및 마리당 종양의 개수에 대한 통계학적 유의성 검증을 위하여 Duncan's t-test로 통계처리 하였고, 종양 발생빈도에 대하여는 Likelihood ration Chi-square test로 유의성을 검증하였다. C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료만을 투여한 대조군의 대장선종의 발생률은 84%(Group 3; 21/25례)로써 I3C 100ppm 및 300ppm을 투여한 경우에 있어서는 각군 모두 60%(Group 1; 12/20 례, Group 2; 15/25 례)로 감소하는 경향을 나타내었다. 대장선종의 마리당 발생개수에 있어서는 C57BL/6J-Apc$^{min/+}$계 수컷 이형접합체 형질전환 마우스에 AIN-76A 정제사료

  • PDF

연관 아이템 트리를 이용한 추천 에이전트 (A Recommender Agent using Association Item Trees)

  • 고수정
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권4호
    • /
    • pp.298-305
    • /
    • 2009
  • 협력적 여과 시스템은 내용 기반 여과 시스템과는 대조적으로 아이템에 대한 정보를 반영하지 않으며, 또한 사용자가 자신의 흥미에 대한 정보를 제공하지 않았을 경우 추천을 할 수 없다는 단점을 갖는다. 본 논문에서는 협력적 여과 시스템의 단점을 해결하기 위하여 연관 아이템 트리를 이용한 추천 에이전트를 제안한다. 제안된 방법은 벡터 공간 모델과 K-means 알고리즘을 이용하여 사용자를 군집시킨 후 그룹의 대표 평가값을 추출한다. 다음으로, 군집된 그룹별로 아이템간의 상호정보량을 계산하여 아이템간의 연관도를 파악하며, 이를 기반으로 연관 아이템 트리를 생성한다. 이와 같이 생성한 각 그룹의 연관 아이템 트리와 그룹의 대표 평가값을 이용하여 새로운 사용자에게 아이템을 추천한다. 제안된 추천 에이전트는 사용자 정보와 아이템 정보를 병합하여 새로운 사용자에게 아이템을 추천하며, 아이템간의 유사도를 계산하기 위하여 상호정보량을 사용하고 이를 기반으로 연관 아이템 트리를 생성함으로써 초기에 아이템에 대하여 평가한 정보가 부족한 사용자에게 정확도가 높은 아이템을 추천할 수 있다는 장점을 갖는다. 제안된 방법은 MovieLens 추천 시스템의 데이터 집합을 사용하여 기존의 방법과 비교하였다.