웹의 발전에 따라 정보 전달의 매체가 웹으로 이동됨에 따라 대부분의 기업이나 기관에서는 그 유용성 및 용이성 때문에 홈페이지를 통해 정보와 서비스를 제공하고 있으며 고객, 직원, 협력사 등과의 거래를 행하는 데 있어 웹 애플리케이션을 사용하는 경우가 많아졌다. 이러한 현상과 함께 웹에 대한 공격이 급증하면서 웹 공격을 필터링 하기 위한 여러 가지 방법이 제시되었다. 본 논문에서는 적은 오버헤드로 웹 서버와 브라우저의 영역에서 보다 신뢰성 있는 웹 페이지 전송을 위한 방법을 기술한다.
수자원 관리 서비스를 위한 인프라스트럭처가 구축되면서, 환경 친화적인 저수조 관리의 중요성이 부각되고 있다. 본 논문에서는 수질 향상을 하고 저수조를 온라인 관리하기 위하여 예측을 이용한 환경 친화적인 저수조 관리를 제안하였다. 제안된 방법에서는 저수조의 상황과 환경을 정의하였고 협력적 필터링을 이용하여 펌프동작, 태양전지, 약품, 저수위, 전화회선, 모뎀에 따른 적합한 서비스를 예측하였다. 예측을 이용한 환경 친화적인 저수조 관리 시스템의 성능 평가를 하기 위해 대응표본 T-검정을 실시하여 유용성을 검증하였다. 평가 결과, 서비스에 대한 만족도의 차이가 통계적으로 의미가 있음을 증명하였고 높은 만족도를 보임을 확인하였다. 따라서 상황 정보 및 환경정보를 제공하여 효율적인 예측에 대한 만족도와서비스의 질을 향상시켰다.
메이크업 스타일이 고객 중심으로 다변화 되어가는 생활환경 속에서 감성과 선호 정도를 파악하는 것은 화장품 판매 전략의 중요한 성공요소가 되고 있다. 본 논문에서는 사용자의 감성과 선호도를 중심으로 메이크업 스타일을 개발하는 방법의 하나로 협력적 필터링 기법을 응용하여 상황 센서정보를 이용한 감성 공학적 메이크업 추천 시스템(MakeupRS)을 제안하였다. 협력적 필터링 기법에서, 사용자들간의 유사도 가중치를 계산하기 위해서 상태 강조를 적용한 피어슨 상관계수를 사용한다. 메이크업 스타일에 따른 감성을 조사하기 위해서, 메이크업 스타일을 6가지 스타일 요소(파운데이션, 컬러렌즈, 아이섀도, 속눈썹, 볼터치, 립스틱)에 따라 분석하였다. 감성공학적 메이크업 추천 시스템을 개발하여 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다.
최근 전 세계적으로 사회적 여건 변화와 소비자의 욕구 변화에 따라 여가 중심으로의 가치관이 변화하면서 다양한 레저스포츠의 수요가 점차 증가하고 있다. 특히 여름철 수상 레포츠에 대한 관심과 참여율이 증가하고 있는 실정이며, 정형화되어있는 수상레저용 보트의 다양한 선체 디자인에 대한 욕구도 증가하고 있다. 따라서 본 논문에서는 소비자들의 선체 디자인에 대한 다양한 욕구의 변화에 적극적으로 대응할 수 있도록 협력적 필터링 기법을 이용한 수상레저용 보트 디자인 설계를 위한 추천시스템을 개발하고자 한다. 이를 위하여 소비자 설문조사를 통해 보트 디자인 관련 감성을 선정하고, 요인분석과 평가로 감성을 도출하여 고객 감성 선호측면에서의 보트 디자인 배열을 제시하였다. 또한 사용자의 선호도를 반영한 보트 디자인에 따른 감성 어휘 선정을 위해서 보트의 선체, 바디, 추진 장치 등의 요소에 따라 분석하여 사용자의 선호도에 맞는 수상레저용 보트 모델을 제시하였다.
메모리 기반의 협력 필터링은 추천 시스템의 대표적인 타입이지만 데이터 희소성이라는 본질적인 문제를 갖고 있다. 이 문제를 해결하기 위해 많은 연구 업적들이 이루어졌으나, 보다 체계적인 접근 방법은 여전히 요구된다. 본 연구는 사용자 간의 유사도를 산출하기 위하여 항목들에 대한 사용자 평가치 분포를 활용한다. 따라서 제안 방법은 사용자의 모든 평가치를 이용하므로, 공통 항목에 대한 평가치만을 이용하는 기존 방법들과 대비된다. 더욱이, 각 항목에 대한 다른 사용자들의 평가치들을 유사도 계산에 반영함으로써 항목 평가치의 광역적인 관점을 취한다. 제안 방법의 성능은 실험을 통하여 평가하였고, 연관된 다른 방법들과 비교하였다. 그 결과, 제안 방법은 예측과 순위 정확도 측면에서 우수한 성능을 보였다. 이러한 예측 정확도의 향상은 전통적인 유사도 척도에 비해 최근의 방법으로 달성한 것보다 최고 2.6배 더 높다.
협력 필터링 시스템에서 데이터 희소성 문제의 해결을 위해 공통평가항목수를 반영하는 방법이 연구되었다. 이러한 방법으로 널리 알려진 자카드 지수는 기존의 유사도 척도와 결합되어 성능을 개선할 수 있었다. 그러나, 다양한 데이터 환경에서 여러 유사도 척도들과 각각 결합했을 때의 성능 개선 효과에 대한 분석 연구는 미미하므로, 본 연구는 이에 대한 분석을 목적으로 한다. 우선 자카드 지수 자체를 유사도 척도로 사용했을때 희소한 데이터셋 상에서 전통적인 척도들보다 월등한 예측 성능을 보였고 추천 성능도 매우 우수하였다. 자카드 지수를 결합함으로써 기존 유사도 척도는 데이터 특성에 상관없이 성능이 대개 향상되었고, 특히 코사인 유사도는 희소한 데이터셋에서 가장 큰 향상을 이루었으나, 평균차이 제곱(Mean Squared Difference)의 유사도는 밀집된 데이터셋에서 오히려 저하된 예측 성능을 보였다. 따라서, 자카드 지수를 결합하여 사용하기 위해 데이터 환경 특성과 유사도 척도를 고려할 필요가 있다.
우리 사회는 급속히 고령화되고 있으며 소득수준은 점점 향상되어 가고 있다. IT 기반 융합기술의 발전에 따라 u-헬스케어 서비스를 위한 인프라스트럭처가 구축되면서, 민간요법으로 알려진 수지침 처방의 중요성이 부각되고 있다. 본 논문에서는 u-헬스케어에서 상황에 따른 자가진단을 이용한 수지침 처방을 제안하였다. 제안된 방법에서는 사용자의 상황과 환경을 정의하였고 협력적 필터링을 이용하여 자가진단에 따른 적합한 수지침 처방 서비스를 예측하였다. 사용자는 제안된 시스템에 단지 병명의 입력만으로도 그에 대한 자가진단으로 정확한 수지침 처방을 얻을 수 있게 된다. 이를 GUI로 구축하여 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하였다. 따라서 상황정보 및 자가진단을 제공하여 수지침 처방에 대한 만족도와 서비스의 질을 향상시켰다.
협력 필터링은 추천 시스템의 대표적인 기법으로서 많은 상업 및 학계 시스템에서 성공적으로 구현되어 서비스되고 있다. 이 기법은 두 사용자 간의 공통 평가 항목에 대한 평가치의 유사성을 기반으로 유사한 이웃 사용자들이 높은 평가치를 부여한 항목들을 추천한다. 최근 사용자들의 항목 평가 시각을 반영하여 시스템 성능을 향상시키려는 시각 인지 추천 시스템 연구가 진행되고 있다. 그러나, 과거 평가치에 대한 일률적인 감쇠율은 시스템의 평가치 예측 성능을 저하시킬 우려가 있다. 본 연구에서는 기존과 다른 접근 방식으로서 평가 시각 인지 기반의 사용자 간 유사도 척도를 제안한다. 이 방법은 항목 평가 시각이 아닌 유사도값의 시간에 따른 변화를 고려한다. 제안 방법의 성능 평가를 위해 다양한 파라미터값과 시간 변화 함수 종류에 대하여 실험 평가를 진행하였으며, 기존의 전통적인 유사도 척도들의 예측 성능을 크게 향상시키는 결과를 나타냈다.
디지털 TV 채널 및 인터넷 상에서의 멀티미디어 컨텐츠의 홍수로 인해 사용자는 종종 자신이 선호하는 컨텐츠를 찾는데 어려움을 갖고 있으며, 또한 컨텐츠를 찾기 위해 많은 시간을 들이고 있다. 심지어 컨텐츠를 검색하는 동안 원하는 정보를 잃어버리는 경우도 있다. 고객들이 선호하는 컨텐츠를 추천하는 기존 시스템들이 가지는 문제점으로 사용자 수가 증가함에 따라 추천시간이 증가하는 확장성 문제와 새로운 고객의 경우 상품에 대한 선호도 정보가 부족할 경우 추천 정확도가 저하되는 희박성 문제가 있다. 본 논문에서는 이러한 문제점들을 해결하기 위해 협력적 필터링 방식에 기반한 2단계 클러스터링 기법을 제안한다. 1단계에서는 고객의 성과 나이와 같은 기본적인 사용자 정보만을 사용하여 추천하고, 2단계에서는 사용자의 동적인 성향 변화를 반영하기 위해 시간스키마를 적용하여 추천한다. 이렇게 추천된 결과의 피드백을 이용함으로써 계산시간의 단축과 예측정확도를 높일 수 있다.
인터넷이 생활의 일부가 되어가면서 정보의 양도 급속도로 늘어나고 있으며, 이로 인해 많은 데이터 속에서 정보를 찾아내는 기술이 부각되고 있다. 협력적 필터링은 유사한 선호도를 기반으로 관심을 가질 것으로 생각되는 아이템을 추천하는 방법이다. 그러나 비슷한 선호도를 가진 일부 사용자의 정보를 바탕으로 하기 때문에 나머지 사용자의 정보를 무시하는 경향이 있다. 본 논문에서는 여학생의 선호도를 이용한 감성공학적 의상 코디를 제안한다. 이는 유전자 알고리즘에 의한 적합함수로 평가값을 계산하고 a-cut을 이용하여 사용자를 군집한다. 마지막으로 협력적 필터링에 의해 의상 코디를 추천한다. 성능평가를 위해 설문조사 데이터 집합에서 FAIMS-I, FAIMS-II과 비교 평가하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.