• Title/Summary/Keyword: 현장 계측

Search Result 1,165, Processing Time 0.027 seconds

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.430-440
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal field. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about 60$^{\circ}$ in the northern part and 83$^{\circ}$ in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9MPa and that of weak sandstone was 10MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north (east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30∼36$^{\circ}$ for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described above. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures, the stability of slope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Analysis on the Characteristics of Ventilation and Cooling for Greenhouses Constructed in Reclaimed Lands (간척지 온실의 환기 및 냉방 특성 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. The climatic conditions around seven major reclaimed land areas with a plan to install advanced horticultural complexes in Korea were analyzed. The characteristics of natural ventilation and temperature rise through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. Results of comparing the ventilation rate of the greenhouse according to the presence or absence of plants showed the greenhouse with plants had the lower ventilation rate, but the smaller rise of indoor temperature due to the evapotranspiration of plants. In the greenhouse with plants, the number of air changes was in the range of 0.3 to 0.9 volumes/min and the average was 0.7 volumes/min. The rise of indoor temperature relative to outdoor temperature was in the range of 1 to $5^{\circ}C$ and the average $2.5^{\circ}C$. The natural ventilation performance of the experimental greenhouse constructed in the reclaimed land almost satisfied the recommended ventilation rate in summer and the rise of indoor temperature relative to outdoor temperature did not deviate considerably from the cultivation environment of plants. Therefore, it was determined that the greenhouse cultivation in Saemangeum reclaimed land is possible with only natural ventilation systems without cooling facilities. As the reclaimed land is located in the seaside, the wind is stronger than the inland area, and the fog is frequent. This strong wind speed increases the ventilation rate of greenhouses, which is considered to be a factor for reducing the cooling load. In addition, since the fog duration is remarkably longer than that of inland area, the seasonal cooling load is expected to decrease, which is considered to be advantageous in terms of the operation cost of cooling facilities.

The Comparison of the Solar Radiation and the Mean Radiant Temperature (MRT) under the Shade of Landscaping Trees in Summertime (하절기 조경용 녹음수 수관 하부의 일사와 평균복사온도 비교)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.5
    • /
    • pp.22-30
    • /
    • 2014
  • The purpose of this study was to compare the Solar Radiation(SR) and the Mean Radiant Temperature(MRT) under the shades of the three landscaping trees in clear summer daytimes. The trees were Lagerstroemia indica, Quercus palustris and Ulmus parvifolia. The solar radiation, the globe temperature and the air temperature were recorded every minute from the $1^{st}$ of April to the $30^{th}$ of September 2013 at a height of 1.1m above on the four monitoring stations, with four same measuring system consisting of a solar radiation sensor, two resistance temperature detectors(Pt-100), a black brass globe (${\phi}50mm$) and data acquisition systems. At the same time, the sky view photos were taken automatically hourly by three scouting cameras(lens angle: $60^{\circ}$) fixed at each monitoring station. Based on the 258 daily sky view photos and 6,640 records of middays(10 A.M.~2 P.M.) from the $1^{st}$ of June to the $30^{th}$ of August, the time serial differences of SR and MRT under the trees were analysed and compared with those of open sky, The major findings were as follows; 1. The average ratio of sky views screened by the canopies of Quercus palustris, Lagerstroemia indica and Ulmus parvifolia were 99%, 98% and 97%, and the SR were $106W/m^2$, $163W/m^2$ and $202W/m^2$ respectively, while the SR of open sky was $823W/m^2$. Which shows the canopies blocked at least 70% of natural SR. 2. The average MRT under the canopies of Quercus palustris, Lagerstroemia indica and Ulmus parvifolia were $30.34^{\circ}C$, $33.34^{\circ}C$ and $34.77^{\circ}C$ respectively, while that of open sky was $46.0^{\circ}C$. Therefore, it can be said that the tree canopies can reduce the MRT around $10{\sim}16^{\circ}C$. 3. The regression test showed significant linear relationship between the SR and MRT. In summary, the performances of the landscaping shade trees were very good at screening the SR and reducing the MRT at the outdoor of summer middays. Therefore, it can be apparently said that the more shade trees or forest at the outdoor, the more effective in conditioning the outdoor space reducing the MRT and the useless SR for human activities in summertime.

Development and assessment of pre-release discharge technology for response to flood on deteriorated reservoirs dealing with abnormal weather events (이상기후대비 노후저수지 홍수 대응을 위한 사전방류 기술개발 및 평가)

  • Moon, Soojin;Jeong, Changsam;Choi, Byounghan;Kim, Seungwook;Jang, Daewon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.775-784
    • /
    • 2023
  • With the increasing trend of extreme rainfall that exceeds the design frequency of man-made structures due to extreme weather, it is necessary to review the safety of agricultural reservoirs designed in the past. However, there are no local government-managed reservoirs (13,685) that can be discharged in an emergency, except for reservoirs over a certain size under the jurisdiction of the Korea Rural Affairs Corporation. In this case, it is important to quickly deploy a mobile siphon to the site for preliminary discharge, and this study evaluated the applicability of a mobile siphon with a diameter of 200 mm, a minimum water level difference of 6 m, 420 (m2/h), and 10,000 (m2/day), which can perform both preliminary and emergency discharge functions, to the Yugum Reservoir in Gyeongju City. The test bed, Yugum Reservoir, is a facility that was completed in 1945 and has been in use for about 78 years. According to the hydrological stability analysis, the lowest height of the current dam crest section is 27.15 (EL.m), which is 0.29m lower than the reviewed flood level of 27.44 (EL.m), indicating that there is a possibility of lunar flow through the embankment, and the headroom is insufficient by 1.72 m, so it was reviewed as not securing hydrological safety. The water level-volume curve was arbitrarily derived because it was difficult to clearly establish the water level-flow relationship curve of the reservoir since the water level-flow measurement was not carried out regularly, and based on the derived curve, the algorithm for operating small and medium-sized old reservoirs was developed to consider the pre-discharge time, the amount of spillway discharge, and to predict the reservoir lunar flow time according to the flood volume by frequency, thereby securing evacuation time in advance and reducing the risk of collapse. Based on one row of 200 mm diameter mobile siphons, the optimal pre-discharge time to secure evacuation time (about 1 hour) while maintaining 80% of the upper limit water level (about 30,000 m2) during a 30-year flood was analyzed to be 12 hours earlier. If the pre-discharge technology utilizing siphons for small and medium-sized old reservoirs and the algorithm for reservoir operation are implemented in advance in case of abnormal weather and the decision-making of managers is supported, it is possible to secure the safety of residents in the risk area of reservoir collapse, resolve the anxiety of residents through the establishment of a support system for evacuating residents, and reduce risk factors by providing risk avoidance measures in the event of a reservoir risk situation.

Economic Feasibility Analysis Study to Build a Plant-based Alternative Meat Industrialization Center (식물성 기반 대체육 산업화센터 구축을 위한 경제적 타당성 분석)

  • Yong Kwang Shin;So Young Lee;Jae Chang Joo
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.118-126
    • /
    • 2024
  • Recently, the alternative meat (food) market is growing rapidly due to the increase in meat consumption due to global population growth and income improvement, as well as issues such as equal welfare, carbon neutrality, and sustainability. The government is also developing a green bio convergence new industry development plan to foster alternative foods, but there are difficulties in commercialization due to the lack of technology and insufficient production facilities among domestic small and medium-sized enterprises, so it is necessary to build joint utilization facilities and equipment to resolve the difficulties faced by companies. am. In addition, small and medium-sized enterprises are having difficulty developing and commercializing plant-based meat substitutes due to a lack of technical skills, and related equipment is expensive, making it difficult to build equipment on their own. Accordingly, Jeollabuk-do is pursuing a strategy to secure the source technology for development, processing, and industrialization of plant-based substitute meat at the level of developed countries by establishing a plant-based alternative meat industrialization center. In this study, an economic feasibility analysis study was conducted when a plant-based alternative meat industrialization center is built in Jeollabuk-do. As a result of the analysis, B/C=1.32, NPV=374 million won, and IRR=4.8%, showing that there is economic feasibility in establishing an alternative meat industrialization center. In addition, as a result of analyzing the regional economic ripple effect resulting from the establishment of an industrialization center, if 38 billion won is invested in Jeollabuk-do, the nationwide production inducement effect is 74 billion won, the added value inducement effect is 29.8 billion won, and the employment inducement effect is 672 people