• Title/Summary/Keyword: 현무암질암

Search Result 61, Processing Time 0.024 seconds

Tectonics of the south Shetland Islands and Geology of king George Island: A Review (남쉐틀랜드군도의 지체구조 및 킹죠지섬의 지질)

  • 이민성;박병권
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.74-83
    • /
    • 1990
  • The similarity in Mesozoic geology between the Antarctic Peninsula and South America indicates the possibility that they had situated along the same tectonics line before the separation of southwestern Gondwanaland. The igneous activity around the Antarctic Peninsula, including the South Shetland islands, can be correlated with the South American Cordillera Orogeny due to the subduction of Farallon/Phoenix plate until late Mesozoic. However igneous activity in Tertiary correlates with the tectonics movement accompanying the formations of Drake passage and Scotian sea. The south Shetland islands form a Jurassic-Quaternary miasmatic island arc on the sialic basement of schist and deformed sedimentary rocks. Forming of the South Shetland Islands arc began during the latest Jurassic or earliest Cretaceous from the southwestern part of the archipelago. The igneous activity migrated northeasterly and continued in most areas until late Tertiary. The entire arc-forming period, between late Jurassic and late tertiary times, was characterized by emplacement and eruption of magmas of intermediate between island-arc tholeiite and calc-alkaline types. However, Quaternary volcanic rocks show strong alkaline affinities which corresponds to the switch from compressional to intra: plate tensional tectonics. The rocks of late Cretaceous to Tertiary, mainly found in King George Island, consist of lava of basalt to andesite and intercalated pyroclastic rocks. Some of the volcanic rocks, which ofter called quartz-pyrite lodes'are severely altered and include much content of calcite,silica and pyrite.The stratographic succession of King George Island can be divided into two formation:Fields formation and Hennequin formation.The Fildes formation crops out at the west side of Admiralty Bay n King George Island,while the Hennequin formation at the east side of the bay.These two formtions are thought to be formed contempiranceously.The Fildes formation consists of altered olivine-basalt and basaltic andestie, whereas the Hennequin formation consists of fine-grained hypersthene-augite-andesite.Both formations interclate pyroclastic rocks.

  • PDF

Magma Pathway of Alkali Volcanic Rocks in Goseong, Gangwon-do, Korea (강원도 고성지역에 분포하는 알칼리 현무암질 마그마의 상승경로)

  • Kil, Young-Woo;Shin, Hong-Ja;Ko, Bo-Kyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.196-207
    • /
    • 2007
  • Miocene basalt plugs in Goseong contain a large variety of crustal and mantle xenoliths and xenocrysts. One of basalt plugs, Unbongsan, are derived from 160 km depth. Whole-rock geochemistry and pressure and temperature conditions of mineral phases indicate that Unbongsan volcanic rocks are alkali basalts and the source magma of the alkali basalts was generated from about $0.2{\sim}2%$ partial melting of depleted garnet peridotite. Crystallization pressures and temperatures of mineral phases within ascending magma of Unbongsan alkali basalt indicate that olivines, clinopyroxenes, and plagioclases were crystallized at $75{\sim}110km,\;40{\sim}52km,\;37{\sim}54km$ depth, respectively. The ascending magma of Unbongsan alkali basalts enclosed mantle xenoliths at about $57{\sim}67km$ depth.

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF

Multiple Magmas and Their Evolutions of the Cretaceous Volcanic Rocks in and around Mireukdo Island, Tongyeong (통영 미륵도 주변 백악기 화산암류의 복식 마그마와 그 진화)

  • Hwang, Sang Koo;Lee, So Jin;Ahn, Ung San;Song, Kyo-Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.121-138
    • /
    • 2018
  • We have examined the petrotectonic setting and magmatic evolution from petrochemical characteristics of major and trace elements for the Cretaceous volcanic rocks in and around the Mireukdo Island. The volcanic rocks, can be devided into Jusasan, Unmunsa, Yokji and Saryang subgroups on the ascending order, are classified as basalt, basaltic andesite, andesite, dacite and rhyolite on TAS diagram. Petrochemical data show that the rocks are calc-alkaline series, and suggest that erupted earlier medium-K series and later high-K series. The volcanic rocks provide a case in which the calc-alkaline magma are formed, not only from separate protoliths, but following separate paths from source to surface. Earlier and later subgroups take different paths to the surface respectively, and are emplaced in the shallow crust as a series of discrete magma chambers through the volcanic processes. After emplacement, each chamber evolves indepently through fractional crystallization with a little assimilation of wall rock. The volcanic rocks have close petrotectonic affinities with orogenic suite and subduction-related volcanic arc. The rhyolitic magma can be derived from calc-alkaline andesitic magma by fractional crystallization with crustal assimilation, which may be derived from a partial melt of peridotite in the upper mantle.

Sr, Nd and Pb Isotopic Compositions of the Pyeongtaek-Asan Alkali Basalts: Implication to the Contrasting Compositional Boundary for the Mantle beneath Korean Peninsula (평택-아산 알칼리 현무암의 Sr, Nd 및 Pb 동위원소 조성: 한반도 아래 맨틀의 대조적인 조성 경계에 대한 의미)

  • Park, Kye-Hun;Cheong, Chang-Sik;Jeong, Youn-Joong
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.144-153
    • /
    • 2008
  • Sr, Nd, Pb isotopic compositions of the Cenozoic basaltic rocks distributed in Pyeongtaek-Asan area display significantly enriched values compared with mid-ocean ridge basalts just like other Cenozoic basalts of Korea. The isotopic compositions of most of the Cenozoic basaltic rocks of Korea including those from Pyeongtaek-Asan area can be explained as mixing between enriched mantle component with relatively low $^{206}Pb/^{204}Pb$ ratios and depleted mantle component. In contrast, Jejudo basalts can be explained as mixing between enriched mantle component with realtively higher $^{206}Pb/^{204}Pb$ ratios and depleted mantle componsnt. Combined with that very similar division of enriched mantle components is applied to the Cenozoic basalts of northeast China and southeast China, it is suggested that subcontinental lithospheric mantle of central and southern parts of Korea represents eastern extension of North China Block and South China Block respectively. The indentation model for the late Paleozoic to early Mesozoic continental collision of China contradicts to such an interpretation, because it cannot explain occurrence of subcontinental lithospheric mantle component of South China Block-affinity under the Jejudo area. Instead, it is more probable that suture zone of the two continental blocks crosses between central and southern Korea and its location is further south from the Pyeongtaek-Asan area. Such distinct location compared with Imjingal belt, supposedly collisional boundary suggested before, suggests that mantle boundary may not be coincide with crustal boundary for the continental collision.

Petrological Study on the Cretaceous Volcanic Rocks in the southwest Ryeongnam Massif: (1) the Mt. Moonyu volcanic mass, Seungju-gun (영남육괴 남서부에 분포하는 백악기 화산암류에 대한 암석학적 연구: (1) 승주군 문유산 화산암복합체)

  • Kim, Young-La;Koh, Jeong-Seon;Lee, Jeong-Hyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.57-82
    • /
    • 2008
  • The volcanic sequence of the late Cretaceous Moonyu volcanic mass which distributed in the southwestern part of Ryeongnam massif, can be divided into felsic pyroclastic rocks, andesite and andesitic pyroclastic rocks, rhyolite in ascending order. The earliest volcanic activity might commence with intermittent eruptions of felsic magma during deposition of volcaniclastic sediments. Explosive eruptions of felsic pyroclastic rocks began with ash-falls, to progressed through pumice-falls and transmitted with dacitic to rhyolitic ash-flows. Subsequent andesite and andesitic pyroclastic rocks were erupted and finally rhyolite was intruded as lava domes along the fractures near the center of volcanic mass. Petrochemical data show that these rocks are calc-alkaline series and have close petrotectonic affinities with subduction-related continental margin arc volcanic province. Major element compositions range from medium-K to high-K. Petrochemical variation within the volcanic sequence can be largely accounted for tractional crystallization processes with subordinate mixing. The most mafic rocks are basaltic andesite, but low MgO and Ni contents indicate they are fractionated by fractional crystallization from earlier primary mafic magma, which derived from less than 20% partial melting of ultramafic rocks in upper mantle wedge. Based on the stratigraphy, the early volcanic rocks are zoned from lower felsic to upper andesitic in composition. The compositional zonation of magma chamber from upper felsic to lower andesitic, is interpreted to have resulted from fractionation within the chamber and replenishment by an influx of new mafic magma from depth. Replenishment and mixing is based on observations of disequilibrium phenocrysts in volcanic rocks. REE patterns show slight enrichment of LREE with differentiation from andesite to rhyolite. Rhyolite in the final stage can be derived from calc-alkaline andesite magma by fractional crystallization, but it might have underwent crustal contamination during the fractional crystallization.

Distribution and Petrology of the Columnar Joint in South Korea (남한에서 주상절리의 분포와 암석학적 특성)

  • Ahn, Kun Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.45-59
    • /
    • 2014
  • This study has been designed to collate distribution, morphology, petrology of columnar joint in South Korea. Reported columnar joint areas in South Korea are 68, until the present time. These can be divided into five group by geography and volcanic activity. 1) The 16 columnar joint areas are distributed in Hantangang region. The 15 areas in this region are composed of basaltic lava in the Quaternary period, and the other 1 area is composed of volcanic rocks in the Cretaceous period. 2) The 18 columnar joint areas are distributed in Jeju island. Most of them are composed of basaltic lava(alkali basalt and Hawaiite), and the Sanbangsan and Baegrokdam area are composed of trachyte in the Quaternary period. Colonnade, entablature and chisel mark of the columnar joint are typically occur in basaltic lava. 3) The 5 columnar joint areas are distributed into the Ulleung island and Dokdo including Guksubawi. These are consisted of relatively well-formed trachyte columns in the Quaternary period. 4) The 8 columnar joint areas are distributed into the Pohang, Gyeongju and Ulsan region and consist of the Tertiary period volcanic rock. It's shape are dome, radial, horizontal and vertical. The 4 columnar joint areas are reported in the Pyeongtaek and Asan city of Chungcheongnamdo and Gosung of Gangwondo. All of them are the Tertiary period basalt. 5) The 15 columnar joint areas are distributed into the west and south coast region. Those are consisted of various rock type(from basalt to dacite), various occurrences(lava flow to welded tuff), and various diameters(20 cm to several meters). The columnar joint of Mudeung mountain and Juwang mountain are welded tuff in the Cretaceous period. The columnar joint is distributed over a wide area in South Korea, 5 in Gangwondo, 13 in Gyeonggido, 2 in Chungnam, 14 in Gyeongbuk, 1 in Jeonbuk, 10 in Jeonnam, 5 in Gyeongnam, and 18 in Jeju. The columnar joints in South Korea can be arranged in order of formative period, 18 in the Cretaceous period, 12 in the Tertiary period, and 38 in the Quaternary period. By magma series, 36 are belong to alkaline series and 32 are belong to sub-alkaline series.

Geochemical Study of Dyke Swarms, SE Korea (한반도 남동부일원의 암맥군에 관한 지화학적 연구)

  • Kim, Jin-Seop;Kim, Jong-Sun;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.182-199
    • /
    • 2002
  • We attempted to show the evolution of the magma and the geochemical characteristics of dikes and dike swarms by using the petrographic and geochemical data from 287 dikes, SE Korea. The dikes can be divided into mafic, intermediate, and felsic dikes in the field. And each of them is subdivided into three groups, two groups, and two groups, respectively. The group (I) among the mafic dikes most pervasively occurs and are distributed in both sides of the Yeonil Tectonic Line (YIL), which petrographic and geochemical characteristics are the same. These facts thus, strongly support the results of the previous studies which showed that they were intruded contemporaneously and that YTL was a main tectonic line which restricted the crustal clockwise rotation during the Early Miocene. The geochemical characteristics are discriminated according to the seven groups divided petrographically. The mafic, intermediate and felsic dikes belong to basalt and basaltic andesite, andesite and facile, and rhyolite, respectively, and the magmas mostly belong to calc-alkaline series. The geochemical data indicate that there were the fractional crystallizations of olivine, clinopyroxene, and plagioclase in the mafic dikes. And the content of characteristic elements and tectonic discrimination diagrams show that the dikes were formed from the magma related to the subduction of plate and that the tectonic setting was related to orogenic volcanic arc.

Mineralogy and Genesis of Bentonites from the Tertiary Formations in Geumgwangdong Area, Korea (제(第)3기층(紀層)에 부존(賦存)하는 점토광물(粘土鑛物)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Kim, Soo Jin;Noh, Jin Hwan;Yu, Jae Young
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.399-410
    • /
    • 1985
  • Bentonites from the Janggi Group of the Lower Miocene age from the Geumgwangdong area, Korea, have been studied for mineralogical and genetic characterization. The Janggi Group is subdivided, in ascending order, into the Janggi Conglomerate, the Nuldaeri Tuff, the Geumgwangdong Shale, the Lower Coal-bearing Formation, the Basaltic Tuff, and the Upper Coalbearing Formation. Bentonites occur as thin or thick beds in all sedimentary units of the Janggi Group, except for the Janggi Conglomerate. Significant bentonite deposits are found in the Nuldaeri Tuff, the Lower Coal-bearing Formation and the Basaltic Tuff. Bentonites consist mainly of smectite (mainly montmorillonite), with minor quartz, cristobalite, opal-CT and feldspar. Occasionally, kaolinite, clinoptilolite or gypsum is associated with bentonites. Bentonites were studied by the methods of petrographic microscopy, X-ray diffraction, thermal analysis (DT A and TG), infrared absorption spectroscopic analysis, SEM, intercalation reaction, and chemical analysis. Smectites commonly occur as irregular boxwork-like masses with characteristic curled thin edges, but occasionally as smoothly curved to nearly flat thin flakes. Most of smectites have layer charge of 0.25-0.42, indicating typical montmorillonite. Crystal-chemical relations suggest that Fe is the dominant substituent for Al in the octahedral layer and there are generally no significant substituents for Si in the tetrahedral layer. Ca is the dominant interlayer cation in montmorillonite. Therefore, montmorillonite from the study area is dioctahedral Ca-montmorillonite. Occurrence and fabrics of bentonites suggest that smectites as well as cristobalite, opal-CT and zeolites have been formed diagenetically from tuffaceous materials. The precursor of smectites is trachytic or basaltic tuff. Smectites derived from the former contain relatively more $Al_2O$ a and less $Fe_2O_3$ than those from the latter.

  • PDF

The Formation of the Cenozoic Volcanic Edifice in the Goseong-Ganseong Area, Gangwondo, Korea (강원도 고성-간성일대의 신생대 화산체의 형성과정)

  • Kim, Hwa Sung;Kil, Youngwoo;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.627-636
    • /
    • 2012
  • In the Obongri-Goseong area of Gangwondo, South Korea, there are six densely distributed volcanic edifices i.e., Duibaejae, Oeumsan, Galmibong, 249 m height, 166 m height, and 102 m height, and two other volcanic edifices including Goseongsan and Unbongsan volcanic edifice that are separately located from a distance. A previously undiscovered 249m volcanic edifice in Obongri was found in this investigation, and the six volcanic edifices distributed in Obongri will be referred to as the Obongri volcanic edifice group. Volcanic edifices in this area were interpreted by other researchers as being volcanic plug, plug dome, and cylindrical volcanic pipe type edifices. The aim of this study is to investigate the aspect of volcanic activity in the Obongri-Goseong area and the formation of volcanic edifices by examining of the shape of volcanic edifices, stratigraphy, and characterization of volcanic products. All the volcanic edifices in the area are composed of basaltic rocks on the Mesozoic granite basement, and the prevalence of the dome shape increased towards the upper part of the mountain. Three volcanic edifices (Duibaejae, 166 m height, 102 m height) include intercalated pyroclastic deposits between the basaltic rocks and the basement. The pyroclastic deposit in the Duibaejae volcanic edifice is composed of quartz, feldspar, granite fragments originated from the basement, and scoria fragments originated from the volcanic eruption. In addition to angular olivine, plagioclase, and pyroxene xenocrysts, all the basaltic rocks contained mantle xenolith, gabbroic xenolith originated from the lower crust, and granitic xenolith originated from the basement. This fact indicates that magma rapidly rose to the surface and that the volcanic activity was explosive. It is also interpreted that, as the basaltic magma became highly viscous due to the large amount of xenocrysts, the erupted magma formed a dome structure on the surface. The original dome structure was then severely eroded out leaving a plug dome formation on the basement.