• Title/Summary/Keyword: 현가계

Search Result 54, Processing Time 0.027 seconds

Deduction of a Simplified Model for the Hydraulic Actuator for a Low-band Type Suspension System (능동제어식 현가계의 유압 구동장치에 대한 단순화 모델 유도)

  • 김동윤;홍예선;박영필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.27-38
    • /
    • 1994
  • In this paper, a simplified model of a hydraulic actuator system for a low-band type active suspension system is derived. To reduce the order of model, time constants of each chamber in hydraulic system are neglected except that of an accumulator. And the dynamics of a spool in the pressure control valve is regarded as a first-order system. The step response and the frequency response of the simplified second-order simulation model exhibit a good agreement with those of the actual system as well as those of the tenth-order simulation model. It is possible to simplify the tenth-order model to the second-order one. The low-band type active suspension model is built up by combining of a quarter car model test rig to testify the validity of the simplified model. The experimental results of suspension characteristics show that the simplified second-order hydraulic actuator model is reasonable to describe the dynamics of the actual hydraulic actuator system for a low-band type active suspension system.

  • PDF

A Study on the displacement characteristics of suspension elements for KTX (고속철도차량 현가계요소 변위특성 연구)

  • Hur H.M.;Kwon S.T.;Lee C.W.;Kim H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.378-382
    • /
    • 2005
  • The opening of high speed railway upgraded our land transportation speed limit, causing lots of changes including living and culture and also paving the way for stepping up the railway technology. However, it is also true that we had a limit to adopt the existing railway system structured for 150km/h to the new structure requiring a higher speed of approximate 300km/h due to technological, based on the time and experience. More importantly, heading toward a step of operating such a high speed railway system, it has been practically and quickly proposed that the railway needs high speed railway engineering, maintenance technology of parts of the vehicles to have a stable maintenance foundation and localization of major parts. Therefore, this study was intended to research the actual displacement characteristics in runningg on an actual track for the purpose of developing the protective and maintenance technology of springs and dampers, which are core parts among suspension elements of a high speed railway vehicle. For this, it was researched the actual vehicle test and its interpretation centered on primary spring, which is used for the suspension system of a bogie, body-body dampers and body-bogie yaw damper. Also, to analyze the displacement characteristics of suspension system in the actual conditions of high speed railway vehicles, a vehicle‘s dynamic characteristics was analyzed and interpreted. At the same time, a tester for measuring the actual displacement of such suspension elements was designed and attached to actual vehicles, to measure the displacements that occur in running it on the Seoul-Busan line, one of major lines serviced by KTX. The displacement data gained from the test with actual vehicles was analyzed for its displacement distribution depending on the service sections and frequency, with which the valuable data necessary for any potential breakdown or maintenance in the future could be obtained.

  • PDF

Structural Design of the Outer Tie Rod for an Electrical Vehicle (전기 자동차용 아우터 타이로드의 구조설계)

  • Seo, Bu-Kyo;Kim, Jong-Kyu;Lee, Dong-Jin;Seo, Sun-Min;Lee, Kwon-Hee;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4171-4177
    • /
    • 2013
  • Outer tie rod is lighter than other, but there is the trend item weight and the number is increasing due to vehicle performance improvement. Thus, to improve vehicle fuel efficiency, weight lightening is essential. Therefore, this research performed the finite element analysis to investigate the structural performance of the outer tie rod for an electrical vehicle. This study was performed as the preliminary study for a lightweight design of the outer tie rod. The weight of outer tie rod was optimized by adopting the steel material and applying the trial and error method. The strengths due to durability and buckling should be considered in the structural design of an outer tie rod. Furthermore, the meta model-based optimization was applied to obtain its lightweight design, leading to 9 % weigh reduction.

Dynamic behavior of moving Elastic Body System on Simple Beam with Axial Load (축하중을 고려한 단순보상의 이동탄성계의 진동해석)

  • 김영수
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.67-73
    • /
    • 2000
  • The dynamic behavior of a moving elastic body system with three constant velocitics on a simple beam with an axial load is analyzed by numerical method. A moving elastic body system is composed of an elastic body and a suspension unit with two unsprung masses. The governing equations are derived with an aid of Lagrange's equation. These equation are solved by Runge-Kutta method. The damping coefficients a spring constants of the suspension unit the force circular frequency on a moving elastic body the velocity of a moving elastic body system. These effects are more important in the high modes of a simple beam.

  • PDF

A study on the improvement of a suspension system adopting a semiactive on-off damper (반능동 단속형 감쇠기를 이용한 현가장치 개선에 관한 연구)

  • 최성배;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.959-967
    • /
    • 1988
  • In this paper, 2-DOF vehicle suspension system with a semiactive on-off damper was studied for improving the ride comfort. It is known that a nonlinear hydraulic damper, which generates force proportional to the square of the relative velocity, can describe the actual fluid resisting type damper more properly than the traditional viscous damping model. On the other hand, hydraulic damper adoption in analysis makes the system nonlinear and causes difficulties to get the system response. In this work, time domain direct integration method was used to calculate system displacement and acceleration. first of all, the response of the suspension system experiencing a given road profile was optimized by Lagrangian multiplier method within the range of given damping coefficients. The appropriate on-loaf damping values were obtained by averaging the already calculated optimum damping coefficients from Lagrangian techniques. The criterion to control the on-off mechanism was determined by examining the suspension efficiency. It was found that the best out of practically applicable criteria is following the sign (positive and negative) of the multiplication of relative displacement and velocity. Judging from the theoretical calculations, it was proved that the semiactive on-off damper can increase suspension efficiency as much as 8-11% in object function.

Shimmy Analysis Program Development of Steering System for a Passenger Car (승용차 조향계의 시미해석 프로그램 개발)

  • Park, S.K.;Song, S.K.;Lee, Y.H.;Song, K.K.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.65-70
    • /
    • 2000
  • The shimmy phenomenon, or the radial vibration of steering wheel, happens frequently at a high speed, complicated with suspension system, steering system, vehicle body, engine, transmission and tire. In this study, the suspension system and steering system are modeled by the reference of vehicle body design coordinates(T.L.H), the coordinate system usually used by passenger car maker. In addition, the theoretical results from numerical method have been investigated and compared with the experimental ones by the correlating analysis between the tire and sub-system. The steering and suspension system modeled for the numerical analysis are both independent type. This study developed an analysis program which could forecast the shimmy level in advance by the variation of properties in each system and the change in design of new model.

  • PDF

Wave Propagation Characteristics along a Simple Catenary with Arbitrary Impedance Condition (임의의 임피던스를 갖는 단순현가방식 가선계의 파동현상)

  • Park, Sukyung;Kim, Seamoon;Kim, Yang-Hann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3463-3473
    • /
    • 1996
  • The characteristics of wave propagation along a catenary depend on various impedance conditions; i.e., spatial impedance of catenary, impedance of boundaries. In this study, wave propagation along a simple catenary system is studied with arbitrary impedance conditions such as impedance of pantograph, boundary, catenary etc. Seven coupled equations which determine the characteristics of wave propagation along catenary system have been derived and numerically solved. Results demonstrate the role of each impedance condition in the dynamics of catenary system, i.e. the way in which the conditions affect waves on catenary as well as contact force of pantograph. The formulation and suggested solution method can be certainly used for desinging an optimal catenary system for a given pantograph.

국내 자동차 산업계의 소음. 진동 분야에 대한 기대

  • 지경택
    • Journal of KSNVE
    • /
    • v.2 no.3
    • /
    • pp.168-172
    • /
    • 1992
  • 최근 자동차 분야에 있어서 많은 변화가 급속히 일어나고 있다. 70년대의 오일쇼크 이후 전륜구동 승용차의 보급이 급속히 확산되고, 연비 경쟁이 늘어났으며 소형. 경량화의 요구는 점차 증가되고 있다. 이후 80년대 들어 전자기술이 접목되면서 혁명적이라 할 수 있는 변화가 일어났고, 그 변화의 추세는 급속히 가속화되고 있다. 자동차의 전자화는 초기에는 공해 및 연비 개선 차원에서 시작됐으나, 이후 안전성 및 주행성능 향상을 겨냥했고, 이제는 인간감성까지 고려한 최적제어 측면에서 활발한 연구가 진행되고 있다. 이러한 변화는 소음. 진동분야에도 일어나, 차량이 점차 고성능. 경량화됨 에 따라 더욱 최적화된 구조물 설계를 요구하고 있고, 더 나아가 전자화를 도입 각종 노면 및 주행상태에 따라 최적의 승차감을 제공하는 전자제어 현가 시스템(E.C.S.)이 상품화되었고, 소리를 발생시켜 소음을 제거시키는 능동소음제어 시스템(ANC)의 실용화 단계를 앞두고 있다. 이러한 시점에 국내 자동차의 소음. 진동분야에 종사하는 많은 사람들에게, 실제 우리 국산화가 국내. 외적으로 소음. 진동부분이 어떻게 평가되고 있는지, 또 자동차 대중화 시대를 맞이한 국내의 많은 소비자들의 불만은 어느 정도인지를 인식시켜 각자의 사명감을 고양하고, 참고적으로 일본의 최근 자동차 분야의 소음. 진동 연구 동향을 소개하여 자동차 소음. 진동 대책 연구에 도움이 되고자 한다.

  • PDF

Development of a Real-Time Vehicle Dynamic Simulation Software (실시간 차량 동역학 시뮬레이션 S/W 개발)

  • Choi, G.J.;Lee, K.H.;Yoo, Y.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.30-37
    • /
    • 1995
  • In this research a real time vehicle dynamic simulation software, to be used on real time vehicle simulators, is developed using relative coordinates and suspension super-element concept. Accuracy of the software is verified through comparisons of simulation results with those of a commercial mechanical system dynamic analysis package. It is demonstrated that real time simulation on a workstation with a 15 D.O.F. vehicle model is possible.

  • PDF

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.