• 제목/요약/키워드: 헬리오스타트

검색결과 15건 처리시간 0.021초

거울형 태양광 채광시스템의 공간유형별 적용현황 분석 (An Analysis on Applications of Mirror Sunlighting Systems to the Contemporary Buildings with Different Spatial Types)

  • 정주희;이종수;김정태
    • KIEAE Journal
    • /
    • 제8권6호
    • /
    • pp.27-38
    • /
    • 2008
  • Sunlighting offers the high quality of life and has potential to improve environment, economy and human comfort. Especially mirror sunlighting system has competitive power in price, saving energy and solving problems of sunshine lack. This study aims to analyze the adequate applications of mirror type sunlighting systems available in Korea to enhance the living environment. For the purpose, contemporary applications were analyzed by spatial characteristics, size and usage in Germany, Switzerland, Australia, Japan and Korea. As the results, they are being applied for the place with lack of sunshine in housings. For culture complex, they are usually applied for atrium. Nowadays, application of complex systems is increasing to solve sunshine lack and make uniform illuminance. Therefore both aesthetic and technical consideration is needed to apply the advanced mirror sunlighting systems in various spaces.

사무용 건축물의 자연채광 설계 및 시공사례 연구 (A case study on design and construction of daylighting system of office building)

  • 김일호;최용준;박경우;이성진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.59.2-59.2
    • /
    • 2010
  • Throughout history, daylight has been a primary source of lighting in buildings, supplemented originally with burned fuels and more recently with electrical energy. Before daylight was supplemented or replaced with electric light in the late 19th-century, consideration of good daylight strategies was essential. As we entered the mid-20th-century, electric light supplanted daylight in buildings in many cases. Fortunately, during the last quarter of the 20th-century and early years of this century, architects and designers have recognized the importance and value of introducing natural light into buildings. There are many simple strategies that can enhance daylighting and reduce the need for electric lights. Good quality daylight is always welcome, but remember that the electric lights must be dimmed or shut off in order for daylighting to save energy. We designed and built mirror systems and vertical daylighting devices to improve daylight condition of office buildings in bad condition because urban density is getting higher. This case study aims to analysis the principles and characteristics of mirror systems and vertical daylighting devices and selected the method that can improve constructability. The results of this study are going to use the back data to set-up the design standards. Hereafter we're going to progress the performance test and product the design manual to improve applicability of daylighting systems at design phase.

  • PDF

확장칼만필터에 의하여 학습된 다층뉴럴네트워크를 이용한 헬리오스타트 태양추적오차의 모델링 (Modeling of Heliostat Sun Tracking Error Using Multilayered Neural Network Trained by the Extended Kalman Filter)

  • 이상은;박영칠
    • 제어로봇시스템학회논문지
    • /
    • 제16권7호
    • /
    • pp.711-719
    • /
    • 2010
  • Heliostat, as a concentrator reflecting the incident solar energy to the receiver located at the tower, is the most important system in the tower-type solar thermal power plant, since it determines the efficiency and performance of solar thermal plower plant. Thus, a good sun tracking ability as well as its good optical property are required. In this paper, we propose a method to compensate the heliostat sun tracking error. We first model the sun tracking error, which could be measured using BCS (Beam Characterization System), by multilayered neural network. Then the extended Kalman filter was employed to train the neural network. Finally the model is used to compensate the sun tracking errors. Simulated result shows that the method proposed in this paper improve the heliostat sun tracking performance dramatically. It also shows that the training of neural network by the extended Kalman filter provides faster convergence property, more accurate estimation and higher measurement noise rejection ability compared with the other training methods like gradient descent method.

Heliostat 제어시스템 (Heliostat Control System)

  • 박영칠
    • 한국태양에너지학회 논문집
    • /
    • 제29권1호
    • /
    • pp.50-57
    • /
    • 2009
  • Heliostat in the tower type solar thermal power plant is a mirror system tracking the sun's movement to collect the solar energy and it is the most important subsystem determining the efficiency of solar thermal power plant. Thus a good performance of it, which is mostly the accurate sun tracking performance under the various hazardous operating condition, is required. Heliostat control system is a system to manage the heliostat sun tracking movement and other operations. It also communicates with the master controller through the heliostat filed control system to receive and send the informations required to operate the heliostat as a part of the solar thermal power plant. This study presents a heliostat control system designed and developed for the 1MW solar thermal power plant. We first define the functionality of heliostat control system. Then sun tracking controller as well as the sun tracking algorithm satisfying the required functionality have been developed. We tested the developed heliostat control system and it showed a good performance in regulation of heliostat motion and communication.

광특성분석시스템(BCS)을 이용한 헬리오스타트 태양추적오차의 측정 및 보정 (Measurement and Compensation of Heliostat Sun Tracking Error Using BCS (Beam Characterization System))

  • 홍유표;박영칠
    • 제어로봇시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.502-508
    • /
    • 2012
  • Heliostat, as a concentrator to reflect the incident solar energy to the receiver, is the most important system in the tower-type solar thermal power plant since it determines the efficiency and ultimately the overall performance of solar thermal power plant. Thus, a good sun tracking ability as well as a good optical property of it are required. Heliostat sun tracking system uses usually an open loop control system. Thus the sun tracking error caused by heliostat's geometrical error, optical error and computational error cannot be compensated. Recently use of sun tracking error model to compensate the sun tracking error has been proposed, where the error model is obtained from the measured ones. This work is a development of heliostat sun tracking error measurement and compensation method using BCS (Beam Characterization System). We first developed an image processing system to measure the sun tracking error optically. Then the measured error is modeled in linear polynomial form and neural network form trained by the extended Kalman filter respectively. Finally error models are used to compensate the sun tracking error. We also developed the necessary image processing algorithms so that the heliostat optical properties such as maximum heat flux intensity, heat flux distribution and total reflected heat energy could be analyzed. Experimentally obtained data shows that the heliostat sun tracking accuracy could be dramatically improved using either linear polynomial type error model or neural network type error model. Neural network type error model is somewhat better in improving the sun tracking performance. Nevertheless, since the difference between two error models in compensation of sun tracking error is small, a linear error model is preferred in actual implementation due to its simplicity.